• 제목/요약/키워드: Linear lens

검색결과 129건 처리시간 0.025초

펨토초 레이저에 의한 투명 유리내부 미세가공특성 (Micromachining Characteristics inside Transparent Materials using Femtoseocond Laser Pulses)

  • 남기곤;조성학;장원석;나석주;황경현;김재구
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.190-196
    • /
    • 2006
  • Transparent materials are widely used in the fields of optic parts and bio industry. We have experiment to find out the characteristics of the micromachining inside transparent materials using femtosecond laser pulses. With its non-linear effects by very high peak intensity, filament (plasma channel) was formed by the cause of the self-focusing and the self-defocusing. Physical damage could be found when the intensity is high enough to give rise to the thermal stress or evaporation. At the vicinity of the power which makes the visible damage or modification, the structural modification occurs with the slow scanning speed. According to the polarization direction to the scanning direction, the filament quality is quite different. There is a good quality when the polarization direction is parallel to the scanning direction. For fine filament, we could suggest the conditions of the high numerical aperture lens, the short shift of focusing point, the low scanning speed and the low power below 20 mW. As the examples of optics parts, we fabricated the fresnel zone plate with the $225{\mu}m$ diameter and Y-bend optical wave guide with the $5{\mu}m$ width.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구 (A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module)

  • 박영덕
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구 (A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons)

  • 신광용;강병준;박강령;신재호
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.438-456
    • /
    • 2010
  • 홍채 인식은 고유한 홍채 패턴을 이용하여 신원을 확인하는 생체 인식 기술이다. 일반적으로 홍채인식에서 는 홍채 직경이 200 화소(pixel) 이상 되는 고해상도 홍채 영상을 사용하며, 이런 경우 인식률 감소 없이 정확한 홍채 인식 결과를 얻는다고 알려져 있다. 이를 위해 기존의 홍채 인식 시스템들은 줌렌즈 카메라를 사용하지만, 이러한 카메라는 홍채 인식기의 가격과 크기를 증가시키는 요인이 된다. 이러한 문제를 해결하기 위하여 본 연구에서는 줌렌즈 카메라의 사용 없이 저해상도로 취득된 홍채 영상에서의 인식 정확도를 향상할 수 있는 방법을 제안한다. 본 연구에서는 기존의 방법과 비교하여 다음과 같은 두 가지 장점을 갖는다. 첫째, 기존의 연구에서는 홍채 직경이 200 화소 이하인 저해상도 영상에서의 홍채 인식 성능 감소에 대한 정량적 분석이 진행된 바 없다. 본 연구에서는 홍채 영상의 초점 정도, 눈꺼풀 및 속눈썹 가림 정도의 영향을 배제하고, 홍채 영상의 크기 변화에 따른 인식율의 저하정도를 정량적으로 파악하였다. 둘째, 한 장의 저해상도 홍채 영상을 고해상도 영상으로 복원하기 위해 홍채 영역의 에지 방향에 따라 개별적으로 다르게 학습된 다중 다층 퍼셉트론을 적용함으로써, 복원된 영상에서의 인식 정확도를 향상시켰다. 원 영상대비 6%만큼의 크기로 축소한 저해상도 홍채 영상을 고해상도 영상으로 복원한 결과, 제안하는 방법에 의한 홍채 인식의 EER이 기존의 이중선형보간법에 의한 EER보다 0.133% (1.485% - 1.352%) 만큼 감소됨을 알 수 있었다.

Opto-Mechanical Detailed Design of the G-CLEF Flexure Control Camera

  • Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.169-185
    • /
    • 2023
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.

Photometric Transformation from RGB Bayer Filter System to Johnson-Cousins BVR Filter System

  • Park, Woojin;Pak, Soojong;Shim, Hyunjin;Le, Huynh Anh N.;Im, Myungshin;Chang, Seunghyuk;Yu, Joonkyu
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.43.2-43.2
    • /
    • 2015
  • The RGB Bayer filter system consists of a mosaic of R, G, and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB, GB, and BB) into the Johnson-Cousins BVR filter system (BJ, VJ, and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal, VJcal, and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are (BJ - BJcal) = 0.064 mag, (VJ - VJcal) = 0.041 mag, and (RC - RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  • PDF

단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구 (Mechanism of Micro-V Grooving with Single Crystal Diamond Tool)

  • 박동삼;서태일;김정근;성은제;한진용;이은상;조명우;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구 (A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center)

  • 김성청;김옥현;이응석;오창진;이찬호
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF