• 제목/요약/키워드: Linear formula

검색결과 453건 처리시간 0.027초

기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석 (Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System)

  • 오영희;김용석
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.173-180
    • /
    • 2006
  • 구조물의 지진응답은 기초지반조건의 영향을 받는다. 이 연구에서는 고정지반과 연약지반을 고려한 3, 5, 7층 철골 건축구조물의 밑면전단력을 산정하기 위해 선형 시간이력지진해석과 비선형 Pushover 정적지진해석을 수행하였다. 등가정적강성식으로 구한 기초지반강성은 SAP2000의 Link 요소 중 Damper 요소를 사용하여 입력하였다. 범용구조해석 프로그램 SAP2000에 의한 시간이력으로 구한 철골건축구조물의 밑면전단력을 국내내진설계기준, UBC-97 설계응답스펙트럼, Pushover 정적 비선형해석으로 구한 밑면전단력과 비교하였다. 중력하중과 풍하중으로 설계된 철골 건축구조물은 0.11g의 중진에 대해 탄성응답을 보였고, 탄성 연약지반에서 구조물-지반의 상호작용과 지반 증폭에 의해 구조물의 변위와 밑면전단력이 증가되었다. 따라서, 중약진 지역에서의 건축구조물은 연약지반의 특성을 고려하여 탄성지진해석을 수행하는 것이 더 합리적이다.

Hermite함수를 이용한 지형곡면근사 (A Terrain Surface Approximation Using the Hermite Function)

  • 문두열;정범석;이용희
    • 한국측량학회지
    • /
    • 제20권3호
    • /
    • pp.265-272
    • /
    • 2002
  • 지금까지 토공량계산을 위한 많은 방법들이 단순식에서부터 복잡한 방법으로 개발되어 왔다. 일찍이 토공량계산을 위한 기본적인 방법은 상부면적을 x, y방향으로 뻗은 경계선의 사각격자로 나누어 계산한다. 그러나 이들 방법은 많은 측량현장에서 요구되는 토공량견적을 정확하게 계산할 수 없다. 1998년 Easa는 x, y 각 방향으로 같은 선상을 따라 사각격자를 나누었다. 이 방법은 격자 양방향으로 3차의 Hermite 다항식을 이용하였다. 이것은 반드시 동일한 x, y방향의 경계를 따라 표고데이터가 존재해야 하므로 지형의 최대, 최소점 같은 점의 선택을 불가능하게 한다. 이 연구에서 제시된 토공량 계산법은 Easa(1998)방법의 단점을 피하고 장점을 결합시켰다. 제안된 방법은 가로x, 세로y 방향의 각 경계를 따라 3차의 Hermite 다항식을 이용하지만 각각의 부등간격의 격자는 양방향으로 일정하지 않고 부분적으로 비격자형태로 이루어져 있다. 새롭게 제시된 방법은 다른 재래식 방법보다 더 나은 정확도를 제공한다.

The Effect of Uncinate Process Resection on Subsidence Following Anterior Cervical Discectomy and Fusion

  • Lee, Su Hun;Lee, Jun Seok;Sung, Soon Ki;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권5호
    • /
    • pp.550-559
    • /
    • 2017
  • Objective : Subsidence is a frequent complication of anterior cervical discectomy and fusion. Postoperative segmental micromotion, thought to be a causative factor of subsidence, has been speculated to increase with uncinate process resection area (UPR). To evaluate the effect of UPR on micro-motion, we designed a method to measure UPR area based on pre- and postoperative computed tomography images and analyzed the relationship between UPR and subsidence as a proxy of micro-motion. Methods : We retrospectively collected clinical and radiological data from January 2011 to June 2016. A total of 38 patients (53 segments) were included. All procedures included bilateral UPR and anterior plate fixation. UPR area was evaluated with reformatted coronal computer tomography images. To reduce level-related bias, we converted UPR area to the proportion of UPR to the pre-operative UP area (pUPR). Results : Subsidence occurred in 18 segments (34%) and positively correlated with right-side pUPR, left-side pUPR, and the sum of bilateral pUPR (sum pUPR) (R=0.310, 301, 364; p=0.024, 0.029, 0.007, respectively). Multiple linear regression analysis revealed that subsidence could be estimated with the following formula : $subsidence=1.522+2.7{\times}sum\;pUPR$($R^2=0.133$, p=0.007). Receiver-operating characteristic analysis determined that sum $pUPR{\geq}0.38$ could serve as a threshold for significantly increased risk of subsidence (p=0.005, area under curve=0.737, sensitivity=94%, specificity=51%). This threshold was confirmed by logistic regression analysis for subsidence (p=0.009, odds ratio=8.471). Conclusion : The UPR measurement method confirmed that UPR was correlated with subsidence. Particularly when the sum of pUPR is ${\geq}38%$, the possibility of subsidence increased.

Amide 결합(結合)을 가진 N-carboxybetaine류(類)의 합성(合成)과 그 계면활성(界面活性) (Studies on the Synthesis and Surface Active Properties of N-carboxybetaine Derivatives Containing Amide Bond)

  • 이동우;이희종;김용인
    • 한국응용과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.115-122
    • /
    • 1991
  • Four novel amphoteric surfactants of N-(2-alkylamidoethyl)-N, N-dimethyl ammonioacetates were synthesized. The each reaction between four saturated fatty acids containing 10, 12, 14 and 16 carbon atoms and N, N-dimethylethylene diamine permitted to give the intermediate products, N-(2-alkylamidoethyl)-N, N-dimethylamines. Quaterinzation of these intermediates was permitted to form N-(2-alkylamidoethyl)-N, N-dimethyl, ammonioacetates, whose sturctures were identified by CC, TLC, elemental analysis, IR pectrophotometry and $^1$HNMR spectrometry. The products yielded from 48% to 58%. The isoelectric points were shown in the range of $4.30{\sim}6.64$. It showed a tendency to learn to the acidic site and its range was broadened as increase of the hydrophobic group length. Surface tensions of the aqueous solution in the $10^{-6}{\sim}10^{-1}$mol/l of amidobetaines were measured. and the critical micell concentration(cmc) were shown in the range of $8.37{\times}10^{-6}{\sim}8.96{\times}10^{-2}$mol/l, and ${\Gamma}_{cmc}$ were reduced to 32.3~38.2 dyne/cm. A linear relationship between log cmc and the number of carbon in the hydrophobic alkyl chain was presented by the formula of log cmc=2.38-0.5n, and the contribution-rate of n on the standard free energy change in micellization ${\partial}({\Delta}G^0$$_m)/{\partial}n$, was calulated as -0.5RT.

GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석 (Investigation of Sensor Models for Precise Geolocation of GOES-9 Images)

  • 허동석;김태정
    • 대한원격탐사학회지
    • /
    • 제22권4호
    • /
    • pp.285-294
    • /
    • 2006
  • 위성영상의 한 점과 그에 대응하는 지상점의 관계를 수학적으로 나타낸 것을 센서모델이라고 한다. 위성영상의 정밀기하보정을 위해서는 오차가 없는 센서모델이 필요하다. 그러나 IMC가 꺼진 상태에서 제공된 GOES-9 궤도 데이터에 기반한 센서모델은 오차가 존재한다. 이러한 문제를 해결하기 위하여 공선 방정식 기반 모델, DLT 기반 모델, 궤도-자세 기반 모델의 세 가지 센서모델에 대하여 실험을 진행하였다. 실험에서는 위성영상과 해안선 데이터베이스를 정합시켜 성공한 결과를 기준점으로 사용하였다. 이렇게 선택된 기준점으로 세 가지 센서모델을 이용하여 GOES-9 영상에 적용시켜 초기 기하보정 정확도를 향상시키고 세 모델간의 정확도를 비교하였다. 최종적으로 궤도-자세 기반 모델이 GOES-9 영상의 정밀기하보정에 가장 적합한 센서 모델임을 증명하였다.

Core Loss Analysis of Non-oriented Electrical Steel Under Magnetic Induction Including Higher Harmonics

  • Cho, Chuhyun;Son, Derac;Cho, Youk
    • Journal of Magnetics
    • /
    • 제6권2호
    • /
    • pp.66-69
    • /
    • 2001
  • The actual magnetic induction waveform of cores in electrical machines is not sinusoidal i.e. higher harmonics are always included. Thus the core loss in actual electrical machines is different from the core loss which is measured by the standard method, because the waveform of magnetic induction should be sinusoidal in the standard testing method. Core loss analysis under higher harmonic induction is always important in electric machine design. In this works we measured the core loss when a hysteresis loop has only one period of an ac minor loop of higher harmonic frequency, depending on the position of the ac minor loop of relative to the fundamental harmonic frequency. From this experiment, the core loss P(B/sub 0/f/sub 0/, B/sub h/, nf/sub 0/)) under a higher harmonic magnetic induction B/sub h/ could be expressed by the linear combination the core loss at fundamental harmonic frequency P/sub c/(B/sub 0/, f/sub 0/), the core loss of ac minor loop at zero induction region of the major hysteresis loop P/sub cL/ (B/sub h/, nf/sub 0/), and the core loss of an ac minor loop in the high induction region of the major hysteresis loop P/sub cH/ (B/sub h/, nf/sub 0/) i.e., P/sub c/, (B/sub 0/, f/sub 0/, B/sub h/, nf/sub 0/)=P/sub c/ (B/sub 0/, f/sub 0/,)+(n-1)[k₁(B/sub 0/) P/sub cL/ (B/sub h/, nf/sub 0/)+(1-k₁(B/sub 0/)) P/sub cH/ (B/sub h/, nf/sub 0/)]. This will be useful formula for electrical machine designers and one of effective methods to predict core loss including higher harmonic induction.

  • PDF

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Deformation and permeability evolution of coal during axial stress cyclic loading and unloading: An experimental study

  • Wang, Kai;Guo, Yangyang;Xu, Hao;Dong, Huzi;Du, Feng;Huang, Qiming
    • Geomechanics and Engineering
    • /
    • 제24권6호
    • /
    • pp.519-529
    • /
    • 2021
  • In coal mining activities, the abutment stress of the coal has to undergo cyclic loading and unloading, affecting the strength and seepage characteristics of coal; additionally, it can cause dynamic disasters, posing a major challenge for the safety of coal mine production. To improve the understanding of the dynamic disaster mechanism of gas outburst and rock burst coupling, triaxial devices are applied to axial pressure cyclic loading-unloading tests under different axial stress peaks and different pore pressures. The existing empirical formula is use to perform a non-linear regression fitting on the relationship between stress and permeability, and the damage rate of permeability is introduced to analyze the change in permeability. The results show that the permeability curve obtained had "memory", and the peak stress was lower than the conventional loading path. The permeability curve and the volume strain curve show a clear symmetrical relationship, being the former in the form of a negative power function. Owing to the influence of irreversible deformation, the permeability difference and the damage of permeability mainly occur in the initial stage of loading-unloading, and both decrease as the number of cycles of loading-unloading increase. At the end of the first cycle and the second cycle, the permeability decreased in the range of 5.777 - 8.421 % and 4.311-8.713 %, respectively. The permeability decreases with an increase in the axial stress peak, and the damage rate shows the opposite trend. Under the same conditions, the permeability of methane is always lower than that of helium, and it shows a V-shape change trend with increasing methane pressures, and the permeability of the specimen was 3 MPa > 1 MPa > 2 MPa.

A retrospective institutional study of human age determination by evaluating the pulp length and width ratio of the maxillary lateral incisor on panoramic radiographs in Indonesian subjects

  • Herianti, Vanessa Rizka;Oscandar, Fahmi;Dardjan, Murnisari
    • Imaging Science in Dentistry
    • /
    • 제51권4호
    • /
    • pp.421-427
    • /
    • 2021
  • Purpose: The pulp length to width (PL/W) ratio of the maxillary lateral incisor can be used as an age determination method. This study aimed to investigate the correlation between the PL/W ratio of the maxillary lateral incisor on panoramic radiographs and human chronological age in Indonesian subjects. Materials and Methods: This study analyzed with 134 maxillary lateral incisors on 113 panoramic radiographs from patients who visited the Oral and Maxillofacial Radiology Unit of Dental Hospital Universitas Padjadjaran, Bandung, Jawa Barat, Indonesia, from 2013 to 2018 (age range: between 11 to 60 years). The pulp length was measured from the pulp chamber roof to the apical foramen, and the pulp width was measured on the cervical area of the cementoenamel junction in millimeters using Fiji ImageJ open-source software. Simple linear regression (in SPSS) was used to analyze the results. The reliability of the observers was evaluated. Results: The PL/W ratio of the maxillary lateral incisor was significantly correlated with chronological age (P<0.01). No statistically significant difference was found in the PL/W ratio between the left and right maxillary lateral incisors(P=0.333). There was a very strong correlation (r=0.939) between the PL/W ratio of the maxillary lateral incisor and human chronological age, with the following formula: age= -3.057+1.875×PL/W ratio (R2=0.882, standard error of estimate: 4.659). Conclusion: The PL/W ratio of the maxillary lateral incisor on panoramic radiograph can be used for age determination in Indonesian subjects.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.