• Title/Summary/Keyword: Linear feature analysis

Search Result 325, Processing Time 0.028 seconds

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition (얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발)

  • Oh, Sun-Moon;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the face recognition system using HNMA(Hippocampal Neuron Modeling Algorithm) which can remodel the cerebral cortex and hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature-vector of the face images very fast and construct the optimized feature each image. The system is composed of two parts. One is feature-extraction and the other is teaming and recognition. In the feature extraction part, it can construct good-classified features applying PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) in order. In the learning part, it cm table the features of the image data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in the dentate gyrus region and remove the noise through the associate memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are face changes, pose changes and low quality image. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

Feature Extraction via Sparse Difference Embedding (SDE)

  • Wan, Minghua;Lai, Zhihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3594-3607
    • /
    • 2017
  • The traditional feature extraction methods such as principal component analysis (PCA) cannot obtain the local structure of the samples, and locally linear embedding (LLE) cannot obtain the global structure of the samples. However, a common drawback of existing PCA and LLE algorithm is that they cannot deal well with the sparse problem of the samples. Therefore, by integrating the globality of PCA and the locality of LLE with a sparse constraint, we developed an improved and unsupervised difference algorithm called Sparse Difference Embedding (SDE), for dimensionality reduction of high-dimensional data in small sample size problems. Significantly differing from the existing PCA and LLE algorithms, SDE seeks to find a set of perfect projections that can not only impact the locality of intraclass and maximize the globality of interclass, but can also simultaneously use the Lasso regression to obtain a sparse transformation matrix. This characteristic makes SDE more intuitive and more powerful than PCA and LLE. At last, the proposed algorithm was estimated through experiments using the Yale and AR face image databases and the USPS handwriting digital databases. The experimental results show that SDE outperforms PCA LLE and UDP attributed to its sparse discriminating characteristics, which also indicates that the SDE is an effective method for face recognition.

Real-time BCI for imagery movement and Classification for uncued EEG signal (상상 움직임에 대한 실시간 뇌전도 뇌 컴퓨터 상호작용, 큐 없는 상상 움직임에서의 뇌 신호 분류)

  • Kang, Sung-Wook;Jun, Sung-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.642-645
    • /
    • 2009
  • Brain Computer Interface (BCI) is a communication pathway between devices (computers) and human brain. It treats brain signals in real-time basis and discriminates some information of what human brain is doing. In this work, we develop a EEG BCI system using a feature extraction such as common spatial pattern (CSP) and a classifier using Fisher linear discriminant analysis (FLDA). Two-class EEG motor imagery movement datasets with both cued and uncued are tested to verify its feasibility.

  • PDF

A Study on the Visual Odometer using Ground Feature Point (지면 특징점을 이용한 영상 주행기록계에 관한 연구)

  • Lee, Yoon-Sub;Noh, Gyung-Gon;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.330-338
    • /
    • 2011
  • Odometry is the critical factor to estimate the location of the robot. In the mobile robot with wheels, odometry can be performed using the information from the encoder. However, the information of location in the encoder is inaccurate because of the errors caused by the wheel's alignment or slip. In general, visual odometer has been used to compensate for the kinetic errors of robot. In case of using the visual odometry under some robot system, the kinetic analysis is required for compensation of errors, which means that the conventional visual odometry cannot be easily applied to the implementation of the other type of the robot system. In this paper, the novel visual odometry, which employs only the single camera toward the ground, is proposed. The camera is mounted at the center of the bottom of the mobile robot. Feature points of the ground image are extracted by using median filter and color contrast filter. In addition, the linear and angular vectors of the mobile robot are calculated with feature points matching, and the visual odometry is performed by using these linear and angular vectors. The proposed odometry is verified through the experimental results of driving tests using the encoder and the new visual odometry.

Performance Enhancement of Marker Detection and Recognition using SVM and LDA (SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상)

  • Kang, Sun-Kyoung;So, In-Mi;Kim, Young-Un;Lee, Sang-Seol;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.923-933
    • /
    • 2007
  • In this paper, we present a method for performance enhancement of the marker detection system by using SVM(Support Vector Machine) and LDA(Linear Discriminant Analysis). It converts the input image to a binary image and extracts contours of objects in the binary image. After that, it approximates the contours to a list of line segments. It finds quadrangle by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted quadrangle into exact squares by using the warping technique and scale transformation. It extracts feature vectors from the square image by using principal component analysis. It then checks if the square image is a marker image or a non-marker image by using a SVM classifier. After that, it computes feature vectors by using LDA for the extracted marker images. And it calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the proposed method achieves enhancement of recognition rate with smaller feature vectors by using LDA and it can decrease false detection errors by using SVM.

  • PDF

Analysis and Usage of Computer Experiments Using Spatial Linear Models (공간선형모형을 이용한 전산실험의 분석과 활용)

  • Park, Jeong-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.2
    • /
    • pp.122-128
    • /
    • 2006
  • One feature of a computer simulation experiment, different from a physical experiment, is that the output is often deterministic. Moreover the codes are computationally very expensive to run. This paper deals with the design and analysis of computer experiments(DACE) which is a relatively new statistical research area. We model the response of computer experiments as the realization of a stochastic process. This approach is basically the same as using a spatial linear model. Applications to the optimal mechanical designing and model calibration problems are illustrated. Algorithms for selecting the best spatial linear model are also proposed.

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.

Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements (근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘)

  • Kim, Seo-Jun;Jeong, Eui-Chul;Lee, Sang-Min;Song, Young-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.

Facial Feature Extraction Using Energy Probability in Frequency Domain (주파수 영역에서 에너지 확률을 이용한 얼굴 특징 추출)

  • Choi Jean;Chung Yns-Su;Kim Ki-Hyun;Yoo Jang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.87-95
    • /
    • 2006
  • In this paper, we propose a novel feature extraction method for face recognition, based on Discrete Cosine Transform (DCT), Energy Probability (EP), and Linear Discriminant Analysis (LDA). We define an energy probability as magnitude of effective information and it is used to create a frequency mask in OCT domain. The feature extraction method consists of three steps; i) the spatial domain of face images is transformed into the frequency domain called OCT domain; ii) energy property is applied on DCT domain that acquire from face image for the purpose of dimension reduction of data and optimization of valid information; iii) in order to obtain the most significant and invariant feature of face images, LDA is applied to the data extracted using frequency mask. In experiments, the recognition rate is 96.8% in ETRI database and 100% in ORL database. The proposed method has been shown improvements on the dimension reduction of feature space and the face recognition over the previously proposed methods.