Analysis and Usage of Computer Experiments Using Spatial Linear Models

공간선형모형을 이용한 전산실험의 분석과 활용

  • Published : 2006.06.30

Abstract

One feature of a computer simulation experiment, different from a physical experiment, is that the output is often deterministic. Moreover the codes are computationally very expensive to run. This paper deals with the design and analysis of computer experiments(DACE) which is a relatively new statistical research area. We model the response of computer experiments as the realization of a stochastic process. This approach is basically the same as using a spatial linear model. Applications to the optimal mechanical designing and model calibration problems are illustrated. Algorithms for selecting the best spatial linear model are also proposed.

Keywords

References

  1. 심정욱, 박정수, 배종성(1994), 'Design and Analysis of Computer Experiments with applications to Quality Improvement', '응용통계연구', 7권, pp. 83-102
  2. 박정수, 황현식(2000), '라틴-하이퍼큐브 실험계혹 간의 거리 계산과 비교', '응용통계연구', 13권, 2호, pp. 477-488
  3. Kim, T. Y., Park, J. S., and Cox, D. D. (2002), 'Fast algorithm for cross-validation of the best linear unbiased predictor', Jour. Camp. Graph. Stat., Vol. 11, pp. 823-835 https://doi.org/10.1198/106186002826
  4. Cox, D. D., Park, J. S., and Singer, C. E.(2001), 'A statistical method for tuning a computer code to a data base', Camp. Stat. Data Anal., Vol. 37, pp. 77-92 https://doi.org/10.1016/S0167-9473(00)00057-8
  5. Cox, D. D., Park, J. S., Singer, C. E., and Sacks, J.(1991), 'Tuning Complex computer Codes to Data', Proceedings 23rd Interface Conference, Vol. 23, pp. 266-271
  6. Park, J. S. and Jeon, J.(2002), 'Estimation of input parameters in complex simulation using a Gaussian process metamodel', Probabilistic Eng. Mech., Vol. 17, pp. 219-225 https://doi.org/10.1016/S0266-8920(02)00006-1
  7. Park, J. S. and Baek, J. S.(2001), 'Efficient computation of maximum likelihood estimators in a spatial linear model with power exponential covariogram', Comput Geosciences, Vol. 27, pp. 1-7 https://doi.org/10.1016/S0098-3004(00)00016-9
  8. Park, J. S.(1994), 'Optimal Latin-hypercube designs for computer experiments', J. Stat. Plan Infer., Vol. 39, pp. 95-111 https://doi.org/10.1016/0378-3758(94)90115-5
  9. Lim, Y. B., Sacks, J., and Studden, W.J. et al.(2002), 'Design and analysis of computer experiments when the output is highly correlated over the input space', Canad. J Stat., Vol. 30, pp. 109-126 https://doi.org/10.2307/3315868
  10. Ryu, J. S., Kim, M. S., and Cha, K. J. et al.(2002), 'Kriging interpolation methods in geostatistics and DACE model', KSME Int Jour., Vol. 16, pp. 619-632
  11. Sacks, J, Welch, W. J., Mitchell, T. et al.(1989), 'Design and analysis of computer experiments', Stat Sci., Vol. 4, pp. 409-435 https://doi.org/10.1214/ss/1177012413
  12. Santer, T. J., Williams, B. J., and Notz, W. I.(2003), The Design and Analysis of Computer Experiments, Springer, NY
  13. Golub, G. H. and van Loan, C. F.(1996), Matrix Computations (3rd ed.), The Johns Hopkins University Press, Baltimore
  14. Welch, W. J., Buck, R. J., and Sacks, J. et al.(1992), 'Screening, predicting, and computer experiments', Technometrics, Vol. 34, pp. 15-25 https://doi.org/10.2307/1269548
  15. Kennedy, M. C. and O'Hagan, A.(2001), 'Bayesian calibration of computer models', J. Roy. Stat. Soc. B, Vol. 63, pp. 425-450 https://doi.org/10.1111/1467-9868.00294
  16. Johnson, M., Moore, L., and Ylvisaker, D.(1990), 'Minimax and Maximin Distance Designs', Jour. Stat. Plan Infer., Vol. 26, pp. 131-148 https://doi.org/10.1016/0378-3758(90)90122-B
  17. Lee, J. H.(1999), 'Asymptotic comparison of Latin hypercube sampling and its stratified version', Jour. Korean Stat. Soc, Vol. 28, pp. 135-150
  18. Fang, K. T.(2002), 'Experimental designs for computer experiments and for industrial experiments with model unknown', Jour. Korean Stat. Soc., Vol. 30, pp. 277-300
  19. Simpson, T. et al.(2001), 'Kriging models for global approximation in simulationbased multidisciplinary design optimization', AIAA Journal, Vol. 39, pp. 2233-2241 https://doi.org/10.2514/2.1234
  20. Simpson, T. et al.(2001), 'Metamodels for computer-based engineering design: survey and recommendations', Engineering with Computers, Vol. 17, pp. 129-150 https://doi.org/10.1007/PL00007198
  21. Hertog, D. and Stehouwer, P.(2002). 'Optimizing color picture tube by high-cost nonlinear programming', European Journal of Operational Research, Vol. 140, pp. 197-211 https://doi.org/10.1016/S0377-2217(02)00063-2
  22. Fang, K-T., Li, R., and Sudjianto, A.(2006), Design and Modeling for Computer Experiments, Chapman & Hall/CRC, Boca Raton