• 제목/요약/키워드: Linear engine

Search Result 317, Processing Time 0.036 seconds

A Flow Analysis for Improvement of the Loop Scavenging Performance of a Free Piston Linear Power System (프리피스톤 리니어 동력시스템의 루프소기성능 향상을 위한 유동해석)

  • Yoon, Jae-Seong;Cho, Hyoung-Wook;Lee, Jong-Tai;Lee, Yong-Gyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2008
  • The focus of this research is that the scavenging aspect of in-cylinder is visualized by the PIV method and its characteristic is analyzed so that the scavenging performance of the free piston hydrogen fueled engine can improve with loop scavenging. As the results, the piston of convex type shows the best scavenging performance among the presented pistons. In case of the abnormal expansion, the scavenging of area between cylinder head and cylinder wall doesn't operate well.

Design of Sliding Mode Controller for Jet Engine (제트엔진의 슬라이딩모드 제어기 설계)

  • Han, Dongju;Kong, Changduck
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.18-26
    • /
    • 2013
  • The technique of sliding mode control has been introduced and designed for jet engine controller. For designing the controller for controlled element, the state space model of the turbojet engine is derived in advance from the perturbation of non-linear engine dynamic equation at operation point. Based upon the jet engine model, the robust sliding mode controller is proposed associated with the optimum sliding mode function. The numerical simulation demonstrates that the designed sliding mode controller proves its effectiveness for the jet engine by showing superior control performances over the conventional PI controller with fast responses and robustness to disturbance.

Surge Control of Small Turbojet Engines with Fuzzy Inference Method (소형 터보제트 엔진의 서지 제어를 위한 퍼지추론 기법)

  • Jie, Min-Seok;Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The surge control system in unmanned turbojet engine must be capable of accounting uncertainties from engine transient conditions, random fluctuations of key parameters such as air pressure and fuel flow and engine modeling errors. In this paper, taking into consideration of its effectiveness as well as system stability, a fuzzy PI controller is proposed. The role of the fuzzy PI controller is to stabilize the unmanned aircraft upon occurring unexpected engine surge. The proposed control scheme is proved by computer simulation using a linear engine model. The simulation results on the state space model of a small turbojet engine illustrate the proposed control system achieves the desired performance.

  • PDF

Effects of Finite-Rate Chemistry and Film Cooling on Linear Combustion-Stability Limit in Liquid Rocket Engine (액체 로켓엔진에서 선형 연소 안정한계에 미치는 유한화학반응 및 막냉각 효과)

  • Sohn Chae Hoon;Park I-Sun;Moon Yoon Wan;Kim Hong-Jip;Oh Hwa Young;Huh Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.189-193
    • /
    • 2005
  • Thermal effect of finite-rate chemistry on linear combustion stability and film cooling effect are investigated in sample rocket engine. The flow variables required to evaluate stability limits are obtained from CFD data with finite-rate chemistry adopted in three dimensional chamber. Major flow variables are affected appreciably by finite-rate chemistry and thereby, the calculated stability limits are modified. It is found that finite-rate chemistry contributes to stability enhancement in thermal point of view. And film cooling also has the effect of combustion stabilization.

  • PDF

Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper (점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.50-58
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

  • PDF

Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper (점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동)

  • Park, Y.N;Song, S.O;Kim, U.K;Jeon, H.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.372-372
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.444-449
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) and presented in time domain.

  • PDF

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로 하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-590
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) and presented in time domain.

Application of robust fault detection method for uncertain systms to diesel engine system (불확실성을 고려한 디젤엔진의 견실한 이상검출)

  • 유경상;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1419-1422
    • /
    • 1997
  • This paper deals with the Appliation of robust fault detection problem in uncertain linear systems, having both model mismatch and noise. A robust fault detection method presented by Kwon et al.(1994) for SISO uncertain systems. Here we experimented this method to the diesel engine systems described by difference ARMA models. The model mismatch includes here linearization error as well as undermodeling. Comparisons are made with alternative fault detection method which do not account noise. The new method is shown to have good performance.

  • PDF

A Study on the Controller Design of Internal Combustion Engine by LMI Approach (선형 행렬 부등식을 이용한 내연기관의 제어)

  • Kim, Yeong-Bok;Byun, Jeong-Hwan;Yang, Ju-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.59-67
    • /
    • 1997
  • This paper gives a controller design method by Linear Matrix Inequality(LMI) for internal combustion engine with Continuously Variable Transmission(CVT) which satisfies the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. To the end, the validity and applicability of this approach are illustrated by simulation in the all engine operating regions.

  • PDF