• Title/Summary/Keyword: Linear energy transfer

Search Result 161, Processing Time 0.027 seconds

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Yong-Kyun;Chai, Jong-Seo;Kim, Yu-Seog;Lee, Hye-Young
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.208-213
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy Particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor(SEM). 35MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy Protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

  • PDF

A Design of Solar Proton Telescope for Next Generation Small Satellite

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Min, Kyoung-Wook;Lee, Dae-Young;Seon, Jongho
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The solar proton telescope (SPT) is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS) which is determined for next generation small satellite-1 (NEXTSat-1). The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4). The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV) for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD) signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

Alpha-emitting Radioisotopes Production for Radioimmunotherapy (방사면역치료를 위한 알파 방출 방사성 동위원소 생산)

  • Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This review discusses the production of alpha-particle-emitting radionuclides in radioimmunotherapy. Radioimmunotherapy labeled with alpha-particle is expected to be very useful for the treatment of monocellular cancer (e.g. leukemia) and micrometastasis at an early stage, residual tumor remained in tissues after chemotherapy and tumor resection, due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha particle. Despite of the expected effectiveness of alpha-particle in radioimmunotherapy, its clinical research has not been activated by the several reasons, shortage of a suitable a-particle development and a reliable radionuclide production and supply system, appropriate antibody and chelator development. Among them, the establishment of radionuclide development and supply system is a key factor to make an alpha-immunotherapy more popular in clinical trial. Alpha-emitter can be produced by several methods, natural radionuclides, reactor irradiation, cyclotron irradiation, generator system and elution. Due to the sharply increasing demand of $^{213}Bi$, which is a most promising radionuclide in radioimmunotherapy and now has been produced with reactor, the cyclotron production system should be developed urgently to meet the demand.

Time Series Simulation of Explosive Charges In Shallow Water Using Ray Approach

  • Hahn, Jooyoung;Lee, Seongwook;Na, Jungyul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.133-140
    • /
    • 2003
  • A time series simulation is presented by a ray approach for the simulating the received waveform of a broadband acoustical signals interacting with the ocean boundaries. The environment is assumed to be horizontally stratified, and the seafloor is described in terms of homogeneous fluid half-space. The ray approach includes the effects of reflection from the air-water, water-sediment interface and phase shifts due to boundaries interaction. To generate time series, we assume that the acoustic energy propagates from source to receiver along eigenrays and represent the action of the bottom on the incident wave by a linear filter and characterized in the frequency domain by the transfer function. As example application, the time series for an explosive source in a shallow water environment is calculated and analyzed in terms of acoustical process. good agreement with measured time series is demonstrated.

Basics of particle therapy I: physics

  • Park, Seo-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.135-146
    • /
    • 2011
  • With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfi ll the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

The Control System Design of Nuclear Reactor Power by Kharitonov Method

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1208-1211
    • /
    • 2002
  • The robust controller for the nuclear reactor power control system is designed. The reactor model is described in the form of transfer function and the bound of each coefficient is determined to set up the linear interval system. By the Kharitonov and the edge theorem, a frequency based design template is made and applied to the determination of the controller. The controller designed by this method is simpler than that obtained by the H(equation omitted). Although the controller is designed with the basis of high power, it could be used even at low power.

  • PDF

Relationships between LET and RBE of lonizing Radiation in the induction of Somatic Mutations of Drosophila melanogaster

  • 유미애;정운혁;이원호
    • Environmental Mutagens and Carcinogens
    • /
    • v.7 no.2
    • /
    • pp.103-111
    • /
    • 1987
  • The effects of LET (linear energy transfer) of radiation on the induction of somatic chromosome mutations or gene mutations of Drosophila melanogaster were studied. For detecting somatic chromosome mutations and gene mutations, Drosophila wing spot system and eye-color spot system were used, respectively. The frequencies of somatic chromosome mutations or gene mutations induced after third instar larval treatment with 23 MeV neutrons, thermal neutrons, X-rays were examined. From these data, the RBE(relative biological effectiveness) values of 23 MeV neutrons relative to X-rays for induction of somatic chromosome mutations or gene mutations were calculated. The present results suggest that high LET radiations are efficient than X-ray in producing not only somatic chromosome mutations but also gene mutations.

  • PDF

Modeling for Vacuum Drying Characteristics of Onion Slices

  • Lee, Jun-Ho;Kim, Hui-Jeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1293-1297
    • /
    • 2009
  • In this study, drying kinetics of onion slices was examined in a laboratory scale vacuum dryer at an air temperature in a range of $50-70^{\circ}C$. Moisture transfer from onion slices was described by applying the Fick's diffusion model, and the effective diffusivity was calculated. Temperature dependency of the effective diffusivity during drying process obeyed the Arrhenius relationship. Effective diffusivity increased with increasing temperature and the activation energy for the onion slices was estimated to be 16.92 kJ/mol. The experimental drying data were used to fit 9 drying models, and drying rate constants and coefficients of models tested were determined by non-linear regression analysis. Estimations by the page and Two-term exponential models were in good agreement with the experimental data obtained.

A Study on the Performance of Automatic Thermostatic Valves for Hot Water Heating System in Residential Buildings (공동주택 난방용 자동온도조절기의 성능해석 연구)

  • Ahn, Byung-Cheon;Lee, Tae-Won;Kim, Yong-Ki;Song, Jae-Yeob
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.457-462
    • /
    • 2005
  • In this study, the performance of automatic thermostatic valves according to each heating method of a large scale residential building were researched by simulation. The flow characteristics of the entire pipe networks of the hot water radiant heating system is analized by using linear analysis method. For the analysis of unsteady heat transfer phenomena in each household, the method of using electric equivalent R-C circuit is applied.

  • PDF