• 제목/요약/키워드: Linear elastic finite element method

검색결과 260건 처리시간 0.022초

스터럿-타이 모델에 의한 강절점 영역설계에 관한 연구 (Design of Rigid Joints Using Strut-Tie Model)

  • 원대연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.31-39
    • /
    • 2014
  • 뼈대구조물의 강절점영역을 설계하기 위해서는 휨모멘트의 작용방향에 따른 절점영역 내부의 응력변화를 정확히 예측하는 것이 매우 중요하다. 본 연구에서는 다양한 형태의 헌치를 갖는 강절점영역의 설계에 있어서 현행의 도로교설계기준이 유용한지에 대해 검토하였다. 또한 선형탄성유한요소해석을 통해 휨모멘트의 작용시의 헌치를 갖는 절점영역내부의 응력상태를 파악한 다음, 이를 바탕으로 스터럿-타이 모델을 제안하였다. 본 연구를 통해 제안한 스터럿-타이 모델은 선형탄성유한요소와 동등수준의 정확도를 가지는 것을 확인하였고, 다양한 형태의 헌치를 갖는 강절점 영역의 보강철근 설계에 유용할 것으로 사료된다.

L1-B4 초음파 리니어 모터의 동작 특성 (Diriving Characteristic of Ll-B4 Type Ultrasonic Linear Motor)

  • 김행식;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.730-733
    • /
    • 2004
  • An ultrasonic linear motor was composed af a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. $L_1-B4$ ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and diriving characteristics. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated an experimented. as results When width was 5[mm], the driving characteristics was good

  • PDF

적층 압전세라믹을 이용한 초음파 리니어 모터의 설계 및 해석 (Design and Analysis of Ultrasonic Linear Motor Using Multilayer Piezoceramics)

  • 김태열;김범진;박태곤;김명호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.61-64
    • /
    • 2000
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic oscillator which generates elliptical oscillations. Elliptical oscillations are generated by synthesizing two degenerated modes. The design of a stator for an ultrasonic linear motor was optimized with respect to vibration mode and direction of vibratory displacement by employing the finite element method. Applying multilayer piezoelectric ceramics. we found larger elliptical oscillations. The motors were designed by varying the width of stator vibrator and the thickness. the length and the position of multilayer piezoelectric ceramics.

  • PDF

유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법 (Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

Finite Element Analysis of Multiple Subsurface Cracks in Half-space Due to Sliding Contact

  • Lee, Sang Yun;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2001
  • A finite element analysis of crack propagation in a half-space due to sliding contact was performed. The sliding contact was simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. Single, coplanar, and parallel cracks were modeled to investigate the interaction effects on the crack growth in contact fatigue. The analysis was based on linear elastic fracture mechanics and the stress intensity factor concept. The crack propagation direction was predicted based on the maximum range of the shear and tensile stress intensity factors.

  • PDF

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

동적감쇠를 고려한 탄성 현수선 케이블의 비선형 해석에 관한 연구 (A study on the non-linear analysis of the elastic catenary cable considering kinetic damping)

  • 한상을;정명채;이진섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.331-338
    • /
    • 2000
  • In this paper, a non-linear finite element formulation for the spatial cable-net structures is simulated and using this formulation, the characteristics of structural behaviors for the elastic catenary cable are examined In the simulating procedure for the elastic catenary cable, nodal forces and tangential stiffness matrices are derived using catenary parameters of the exact solutions by a governing differential equation of catenary cable, cable self-weights and unstressed cable length. Dynamic Relaxation Method that considers kinetic damping is used for the structure analysis and Newton Raphson Method is used to verify the accuracy of solutions. In the analysis of two dimensional cable, the results obtain from the elastic catenary elements are shown more accurate than does of truss elements and in the case of spatial cable-net structures, Dynamic Relaxation Method is more stable to be converged than Newton Raphson Method.

  • PDF

시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석 (Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral)

  • 이성희;심우진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

Numerical solution of linear elasticity by preconditioning cubic spline collocation

  • Lee, Yong-Hun
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.867-880
    • /
    • 1996
  • Numerical approximations to the linear elasticity are traditionally based on the finite element method. In this paper we propose a new formulation based on the cubic spline collocation method for linear elastic problem on the unit square. We present several numerical results for the eigenvalues of the matrix represented by cubic collocation method and preconditioner matrix which is preconditioned by FEM and FDM. Finally we present the numerical solution for some example equation.

  • PDF

수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석 (Multibody Elastic Contact Analysis by Modified Linear Programming)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 1989
  • 본 연구에서는 마찰을 무시할 수 있는 경우의 일반적인 다물체 탄성 접촉 문제를 수식화하고 이를 최적화 문제로 변환한 후 수정된 선형 계획법을 이용하여 임의 형상의 다물체간의 접촉 문제를 해석할 수 있는 산법을 제시하였다.