• 제목/요약/키워드: Linear control

검색결과 6,259건 처리시간 0.034초

Design of Unknown Input Observer for Linear Time-delay Systems

  • Fu, Yan-Ming;Duan, Guang-Ren;Song, Shen-Min
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.530-535
    • /
    • 2004
  • This paper deals with the unknown input observer (UIO) design problem for a class of linear time-delay systems. A case in which the observer error can completely be decoupled from an unknown input is treated. Necessary and sufficient conditions for the existences of such observers are present. Based on Lyapunov stability theory, thedesign of the observer with internal delay is formulated in terms of linear matrix inequalities (LMI). The design of the observer without internal delay is turned into a stabilization problem in linear systems. Two design algorithms of UIO are proposed. The effect of the proposed approach is illustrated by two numerical examples.

Matlab Simulink를 이용한 선형 유도전동기의 속도제어특성 (The Simulation of Constant Speed Control Characteristics for Linear Induction Motor using Matlab Simulink)

  • 김성결;나종덕;조금배;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1223-1225
    • /
    • 2004
  • In difference with the rotary type electrical machinery, the linear induction motor(LIM) that generates the direct thrust directly, is widely used for the operation system of electrified railroad, elevation system, conveyer system, and so on. The operational principle of linear induction motor is constructively similar to the general rotary induction motor. It is difficult to realize the complicate linear induction motor which is applied SVPWM system, but widely used in vector motor control system or servo control system because of its high performance in current control. In this paper, we presented the dynamic characteristic analyzing methode, and calculated efficiently the end effect by using equivalent circuit methode in the operating linear induction motor control system for Maltlab simulink modeling.

  • PDF

PID 제어를 이용한 파장 스위핑 레이저의 스위핑 선형화 (Sweeping Linearization of Wavelength Swept Laser using PID Control)

  • 엄진섭
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a PID control method for sweeping automatic linearization of a wavelength swept laser is proposed. First, the closedloop transfer function embodying the PID control is derived. Through the simulation of the function, Kp = 0.022, Ki = 0.008, Kd = 0.002 were obtained as the best PID coefficients for fast linear sweeping. The performance test using the PID coefficients showed that linear sweeping was held up well with a 98.7% decrement in nonlinearity after the 10th feedback, and 45 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The equipment consists of a fiber Bragg grating array, an optical-electronic conversion circuit, and a LabVIEW FPGA program. Every 5s, automatic feedback and PID control generate a new compensated waveform and produce a better linear sweeping than before. Compared with nonlinear sweeping, linear sweeping can reduce the cumbersome and time-consuming recalibration processes and produce more accurate measurement results.

퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링 (Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods)

  • 지효선;구근모;이훈구;탁민제;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF

단부효과가 고려된 편측형 선형유도전동기의 안정속도제어 모델링 (The Stabilized Speed Control Modeling of Single-side Linear Induction Motor Considering End-effect)

  • 임홍우;채봉;최문한;이강연;조금배;백형래
    • 전력전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.266-273
    • /
    • 2006
  • 선형유도전동기의 순시 속도에서의 1,2차 상대 위치이동으로 나타나는 동 특성과 이 때의 단부효과를 고려한 등가회로 해석방법을 이용하여 시스템을 모델링하고 SVPWM 구동시스템에 적용한 정속도 제어 특성을 부하조건에 따른 동작특성으로 시뮬레이션하여 SVPWM 구동 편측형 선형유도전동기시스템에 적용가능성을 입증하였다.

전류제어 루프를 갖는 선형 압축기 스트로크 제어기의 동적 성능 향상에 관한 연구 (A Study of the Dynamic Performance Improvement of a Linear Compressor Stroke Controller with a Current Control Loop)

  • 오준태;김규식
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.274-282
    • /
    • 2013
  • 본 논문에서는 위상지연필터를 이용한 전류제어 루프를 갖는 선형압축기의 스트로크 제어기를 구현하였다. 선형압축기가 적용된 냉장고나 에어컨의 냉각능력을 제어하기 위해서는 단위시간동안 피스톤의 움직인 거리, 즉 피스톤의 속도를 제어해야 하는데 이때 리니어 모터의 주파수나 스트로크를 조정함으로써 가능하다. 이때, 주파수를 고정하고 스트로크를 변화시키는 것이 일반적이다. 인가된 전류를 정밀하게 제어하는 것이 선형압축기의 동특성을 좌우하는데, 본 연구에서는 전류제어 루프를 갖는 피스톤 진폭 제어기를 제안하고 성능이 우수함을 모의실험을 통해 확인하였다.

Design of an RCGA-based Linear Active Disturbance Rejection Controller for Ship Heading Control

  • Ahn, Jong-Kap;So, Myung-Ok
    • 한국항해항만학회지
    • /
    • 제44권5호
    • /
    • pp.423-429
    • /
    • 2020
  • A ship's automatic steering system is the basis for addressing control difficulties related to course-changing and course-keeping during navigation through heading angle control, and is a link in realizing unmanned and autonomous ships. This study proposes a robust RCGA-based linear active disturbance rejection controller (LADRC) design method considering environmental disturbances, measurement noise, and model uncertainties in designing a ship heading controller for use when the ship is sailing. The LADRC consisted of a transient profile, a linear extended state observer, and a PD controller. The control gains in the LADRC with the linear extended state observer were adjusted by RCGAs to minimize the integral of the time-weighted absolute error (ITAE), which is an evaluation function of the control system. The proposed method was applied to ship heading control, and its effectiveness was validated by comparing the propulsive energy loss between the proposed method and a conventional linear PD controller. The simulation results showed that the proposed method had the advantages of lower propulsive energy loss, more robustness, and higher tracking precision than the conventional linear PD controller.

On the stabilization of linear discrete time systems subject to input saturation

  • Choi, Jinhoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1770-1773
    • /
    • 1997
  • In this paper, a linear discrete time system subject to the input saturatioin is shown to be exponentially stabilizable on any compact subset of the constrained asymptotically stabilizable set by a linear periodic variable structure controller. We also establish tat any neutrally stable system subject to the input saturation can be globally asymptotically stabilizable via linear feedback.

  • PDF

A Study on Intelligent Decentralized Active Suspension Control System with Descriptor LMI Design Method

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.198-203
    • /
    • 2008
  • An Intelligent optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory with representing by descriptor system form is presented. The validity of the linear matrix inequalities intelligent decentralized control system design with representing by descriptor system form in active suspension system through the numerical examples is also investigated.

Robust adaptive control of linear time-varying systems which are not necessarily slowly varying

  • Song, Chan-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1424-1429
    • /
    • 1990
  • This paper presents an indirect adaptive control scheme for discrete linear systems whose parameters are not necessrily slowly varying. It is assumed that system parameters are modelled as linear combinations of known bounded functions with unknown constant coefficients. Unknown coefficients are estimated using a recursive least squares algorithm with a dead zone and a forgetting factor. A control law which makes the estimated model exponentially stable is constructed. With this control law and a state observer, all based on the parameter estimates, it is shown that the resulting closed-loop system is globally stable and robust to bounded external disturbances and small unmodelled plant uncertainties.

  • PDF