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Abstract

This paper presents an indirect adaptive control
scheme for discrete linear systems whose parame-
ters are not necessarily slowly varying. It is as-
sumed that system parameters are modelled as lin-
ear combinations of known bounded functions with
unknown constant coefficients. Unknown coefficients
are estimated using a recursive least squares algo-
rithm with a dead zone and a forgetting factor. A
control law which makes the estimated model ex-
ponentially stable is constructed. With this control
law and a state observer, all based on the parameter
estimates, it i3 shown that the resulting closed-loop
system is globally stable and robust to bounded ex-
ternal disturbances and small unmodelled plant un-
certainties,

1 Introduction

In many applications, the plant to be controlled is
time-varying. However, most research on adaptive
control deals with time-invariant systems. Some re-
sults do exist on the adaptive control of linear sys-
tems with slowly varying parameters (see, for ex-
ample, (1], [2], [3] and [4]). However, the results for
the systems which are not necessarily slowly vary-
ing are very few. Adaptive control schemes pro-
posed by Xianya and Evans [5] and later Zheng (6]
are for those systems, but these schemes can not be
applied ta the systems which are not stably invert-
ible. Tsakalis and loannou [7) proposed an indirect
adaptive pole-placement scheme for continuous lin-
ear time-varying systems which may be fast time-
varying.

Recently, Kamen, Bullock and Song [8] devel-
oped an indirect adaptive control scheme for multi-
input multi-output linear discrete-time systems which
are not necessarily slowly varying nor stably in-
vertible. In [8], a projection scheme was used in
the parameter estimation to ensure the reachabil-
ity of the estimated model. In this paper, projec-
tion scheme will be replaced by search techniques in
such a way that they do not restrict the estimation
process. Furthermore, the adaptive control scheme
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will be modified to achieve more robustness by in-
cluding a dead zone in the estimation algorithm.
As in [8], we assume that the plant is specified by
an n-th order input/output difference equation and
time-variations of coefficients are modelled as lin-
ear combinations of known bounded functions with
unknown coefficients. The unknown coefficients are
then estimated by a recursive least squares scheme
with a dead zone and a forgetting factor. As a
control law, a generalized Kleinman’s method [9] is
taken. Its advantage over other methods such as the
pole-placement [10] and transfer function approach
(11] is ease of implementation, especially when the
reachability index N > n where n is the system
order. With this control law and a state observer,
all based on the estimated parameter values, it is
shown that the resulting closed-loop system is glob-
ally stable and roust to bounded external distur-
bances and small unmodelled plant uncertainties.

2 Preliminaries

We consider a single-input single-output (SISO) time
varying discrete-time system described by n-th or-
der input foutput difference equation

ym=gmmw4)

+ Y b(k)ulk —§) + d(k) (1)
i=1

where u(k) is the control, y(k) is the output, d{k)
i8 the bounded external disturbance and n is the
system order which is assumed known. In prac-
tice, some a priori knowledge about time-variation
of system parameters a.(k) and (k) are often avail-
able, 8o we assume that e;(k) and b;(k) are linear
combinations of known bounded functions with un-
known constant coefficients. However, there may
be some errors in the modelling of parameter time-
variations. We, therefore, express a,(k) and b;(%) in
the form

ailk) = V(e + Do (RN (E) i=1,..,n (2)

§=1



(k) = g(bu + AL ) fK) i=1,...m (3)

where a;; and b;; are unknown comstant scalars,
v is a known integer, f;(k) are known real-valued
bounded functions of k, and Aa,;(k) and Ab;(k) are
mismatch terms which are also referred to as Un-
modelled Plant Uncertasntics or simply Plant Un-
certasntses. Note that the rate of time-variation of
a;(k) and b;(k) depends on the rate of time-variation
of f;(k) which can be arbitrarily fast.

We define the parameter vector 8, the regression
vector ¢(k) and the plant uncertainty vector §(k) by
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fi(E)uk—1)--- f(F)u(k—n)]  (5)
8'(k) = [Aan(k) - - Adar (k)
Abyy (k) -+ - Ab,. (k)] (6)

where “' ” denotes the transpose of a matrix. Then
the input/output difference equation (1) can be writ-
ten in a compact form

(k) = (6 +6(k))'¢(k - 1) +d(k) (0

For the construction of a state feedback control
law, we consider the canonical observable realiza-

tion of (1) given by
z{k + 1)

F(k)z(k) + G(k)u(k)
+ H'd(k +1)
Hz(k)

(8)
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If 2 bounded row vector L{k) exists such that
z(k+ 1) = (F(k) — G(k) L{k)}z (k) is asymptotically
stable,then L{k} will be called a stabilizing feedback
gain. In particular, L{k) can be computed from the
N-step reachability grammian defined by

k4N -1
T O(k+ N,i +1)G(i)-
=k

C'(§)®'(k+ N,i + 1).

Y (k)
(19)

475

where ®(k,¢) denote the transition matrix for the
system z(k + 1) = F(k)z(k). If a pair (F(k), G(k))
is uniformly reachable in N steps, ie.,

Yw(k) > el forsomee >0 Vk e 2+ {11)

where Z+ denotes a set of nonnegative integers,
then a stabilizing feedback gain L(k) which will be
referred as to Kletnman feedback gatn is

LK) = GR)®(k+ N+ 1Lk + DY, (6) -
®k+ N+ 1LE+D)F(E). (12)

The proof that L{k) ia a stabilizing feedback gain
follows from the work of Moore and Anderson [9].
This type of control law will be used for the adap-
tive control scheme. Then we need the following
assumption:

A.1: The observable realization of {1} described
by (8)-(9) is uniformly reachable in N steps with
N>a.

The above assumption ensures that there is a
stabilizing feedback for the system to be controlled.
However, the system parameters are not exactly
identified in general, so this assumption does not
guarantee the reachability of the estimated model.

When the parameter estimate 6(k) violates the
reachability condition, we can use search techniques
to find a substitute for §(k) (call it &(k)) which sati-
fies the reachability condition. Furthermore, §({%) is
required to retain some properties of the estimation
process which sre crucial in proviag the closed-loop
stability. In case of lesar thoe-invariapt systems,
there exist some works in this bas of study (see, for
example, [12], {13]}. The idea proposed by Lozano-
Leal and Goodwin {12] will be adopted in our setup
where we treat linear time-varying systems.

Now, we want to find a proper adaptive control
algorithm which niakes the rlosed-ioop system glob-
ally stable, that is, all siguals in the system converge
to zero for any initial conditions. We would also like
to ensure that the adaptive control scheme is robust
o unmedelled dyvnamics and external disturbances.
In this paper, robustness {o errors in the modelling
af parametar tima-variations (see eqeations {2} and
(3}) and bounded external disturbances will be con-
sidered. If the mismatch terta 6(k) is slowly vary-
ing, the estimation algorithm can track, to some
extent, the variation of 6(k) by using a forgeiting
factor. Thus, the use of a forgetting factor will im-
prove robustness to these modelling errors. How-
ever, it is still possible that the parameter estimates
are updated alopg the wrong direciion and even
makes the closed-loop system unstable. We there-
fore use a dead zone as well as a forgetting factor
to achieve further robustness to the plant uncer-
fainties. We now sizie the robusiness problem of
our concern as follows : ihere exists D)* > 0 such
that for any bounded exiernal disturbances d(k)



and for all possible plant uncertainties 6*(k) sat-
isfying sup{||6* ()|} < D, the closed-loop system
is stable {14).

3 Parameter Estimation

Based on the model (7), we shall construct an esti-

mator of the parameter vector 4 by using a recursive

least squares scheme with a forgetting factor and a

dead zone. We first take a normalized version of (7)

which is necessary in the following development.
Define normalized signals as

vx(K) y(k)/n(k — 1)
$a(k-1) = o(k—1)/n(k-1)

(I

(13)
where

n(k — 1) = max{1, [|$(k - D}

and ||¢(k)| is the Euclidean norm of ¢(k). Then,
{7) is equivalent to

(k) = (0 + 6(k))'du(k — 1) + d(K)/n(k - 1). (14)
With the normalized prediction error
en(k) = ya (k) — &'k — 1)pn(k — 1) (18)

and the normalized signals defined in {13), the es-
timation algorithm is given by

8(k) = 8(k — 1)+
0(k)1\(k]P(k)¢.(k - 1)8,.UC) (16)
P = 5y Pk~ 1)
alk)Pk — (k= 164k = Pl - 1),
T+6clk — 1P(E - DgilE - 1)
P(0) = P(0) >0 (17)

A(k) =1~
1 (k- P10k 1)
trP(0) 1+ ¢, (k- 1)P(k - 1)p,(k-1)
where A(k) is a forgetting factor with 0 < A(k) <1

and a(k) is the dead zone indicator which has a
value O or 1.

The forgetting factor A(k) defined by (18) keeps
the trace of P(k) constant {12]. As a result, param-
eter updating will not stop in the case when there
are model errors in the modelling of (2) and (3).

Now, denote the size of dead zone by A{k). Then

a{k) is given by

qu:{

I we choose the size of dead zone A(k) as
Afk) =
VeE)I8atk — DID + W/n(k 1)) (20)

1 if A(k) < |lea(R)]]

0 otherwise (19)
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u(k) =1+ ¢, (k- )Pk - 1)gu(k - 1)
with some constants I) and W satisfying

D > sup{||6(k)ii}

W > sup{||d(k){I}

then the estimation scheme has the following prop-
erties which are crucial in proving the closed-loop
stability.

Lemma 3.1 : For the parameter estsmation algo-
rithm (16) - (18) with the dead zone defined by (19)
- (20), applied to the plant model (1) - (8}, suppose
that sup{||d(k}||} < W and sup{||6(k)|[} < D. Then
the following propertics hold:

§)  P(k) ts uniformly bounded.
&) Timsup{les (k)] - K (s (k ~ DID
+W/alk - 1))} €0 for some K > 1
i} (k) is uniformly bounded.
) |lek)-0k—1)|| =0, as k— o0

This theorem is a simple extension to the results
in {12} (unmodelied plant uncertainties and exter-
nal disturbances were not considered in [12]). We
therefore briefly outline the proof.

Proof (Outline): i) See {12].

ii) Define the functional

v(k) = (6(k) - )P (R)(8(F) - 8)  (21)

Using (16) - (17) and the property that
0< (k) <1
we have
v{k) = A(k)v(k — 1) e

~a MR g E = TP (- T =)

=linte - 1)|1%) (22)
where

R(K) = O(R)ga(k — 1) + A(R)/(k — ). (29)

Then (19) - (20} gives
v(k) < ok —1).
Since v{k) > OVk, v(k) converges. Then ii) follows

from (22).
iii} Using the fact that v(k} < X(k)u(k — 1), we get

li6(k) — 8] < tr (P{0))o(0, k)v(0) (24)
where
o(i, k) = A + JA(+2)--- Mk) for § < k;
of(k,k)=1. (25)



Therefore, iii} holds.
iv) Let

tli_l‘nma(o, k) = 00, 00).
If (0, 00) = 0, then 8{k) — # from (24} and thus
iv) holds. Now assume that 0{0,00) # 0. Then,
A(k) — 1 a8 k — co. and thus from (18)

Plk - 1)¢u(k—-1)—0. (26)
Then iv) follows from (16) and (26). &

4 Adaptive Control Scheme

We shall construct a feedback control law which
makes the estimated model exponentially stable and
show that this control law makes the closed-loop
system robustly globally stable. Consider the ob-
servable realization (8) - (9) of the plant to be con-
trolled. To denote that the plant model depends
on the parameter vector 8, we shall denote F{k)
and G(k) by F(6, k) and G(4, k), respectively. Now
given the estimate 8(k) of & produced by the pa-
rameter estimator, we define the estimated model
to be

z(k + 1) = F(0(k), k)z(k) + G(6(k), k)u(k)} (27)

where F(8(k), k) and G(8{k), k) are equal to F(8, k)
and G(68, k) with 6 replaced by the estimate §(k).

Suppose that (F(8#, k), G(8, k)} with 8 replaced
by the estimate #(k) violates the reachability con-
dition (11). Then, we shall search a substitute #(k)
for 8(k) where 6(k) is in the form {12], [13]

8(k) = 8(k) + P(K)(k). (28)

v(k) in (28) is a vector which is to be chosen if
necessary but normally zero.
Define an augmented error &, (k) by

en(k) = ya(k) - gl(k - 1)¢n(k - 1)' (29)
Then
& (k) = ea(k) — (K~ )P(k - 1)y(k - 1) (30)
and thus &,(k) — e, (k) as k¥ — o0
provided (k) is bounded. Furthermore,
if 7(k)—7(k—1)>0ask— oo,
G(k) —O(k - 1) — 0.

In order that J(k) retains some properties of the
estimation process as in Lemma 3.1, We want to
impose the following properties on (k) :

(a) (k) is bounded.
(b) k)-k-1)—0, a8 k— oo
() det (Yyslfik), k) >¢

for some € > 0, Vk € Z%,

Noting that det(Yy..(9, k) is a polynomial in
entries of #, we can show that A# can always be
found in a finite number of steps such that

det (Yy41(0 + A0 k) > ¢,

for some € > 0 where ¢ is independent on k and for
fixed k € Z+. Numerical procedures to find (k)
in a finite number of steps such that it satisfies (a)
- (¢) will not be treated here in details. Conceptu-
ally, a procedure is described as follows: We take in
advance a subset {1 of the parameter space whose
element satisfies the reachability condition. {}is not
necessarily covex nor connected. We choose the di-
rection of (k) such that the distance from #(k) to
£l is minimized and the magnitude of (k) i8 chosen
as small as possible while satisfying the reachability
condition.
We now assume that the system

z(k+ 1) = F(0,k)z(k) + G0, Bu(k)  (31)

is reachabile in N steps for any 4 replaced by 6(k),
k € Z+. Kleinman feedback gain for the system (31)
obtained from {12} will be denoted as L{#,k). On
the other hand, in order to calculate Kleinman feed-
back gain for the estimated model by using {12),
we need the future values of the parameter esti-
mates. Nevertheless, as shown in the next lemma,
L{8(k), k} with @ replaced by 8(k) leads to a stabi-
lizing feedback gain for the estimated model.

Lemma 4.1 : [zt L8, k) be Kletnman feedback
gasn for the system (S1) with 6 replaced by 8(k).
Then L{0(k), k) ss uniformly bounded and

(F(6(K), k) - G(B(k), k) L(O(F), k))
13 exponentially stable,

Proof: Since {f;{k)}. 5 = 1,---,r are bounded
functions and #(k) is uniformly bounded, L(4(k), k)
is also uniformly bounded.

Now, denote the N-step reachability grammi-
ans of the system {31) and the estimated mode! by
Yy (8,k) and Y, (9(k), - - -, 8(k+N), k), respoctivaly.
By property iv) of Lemma 3.1,

[{8{kY — 8{k — 1}]| — 0 as k - o0.
Therefore, as k — oo

det{Vy ., (0k), k))~
det{(Vus:(8(K), -, 0(k + N), k) =0
by continuity of Yy4((f, k) as a function of 8. The
remainder of the proof is straightforward. =
If L{8(k), k) is a stabilizing feedback gain, then
the adaptive contro! scheme is realized by

u(k) = — L{0(k), k)2(k) (32)
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where Z(k) is the estimated state vector. The esti-
mate 2(k) is obtained from the state observer

&(k + 1) = F(B(k), k)E() + G(O(k), K)u(k)
~+M(8(k), k)(y(k) — HE(K)) (33)

where
M (6(k), k) = [a:(0(k), k +1) --- a(8(K), k + n)]

and a6,k + 1) is ai(k + ¢) with the coefficients
replaced by elements of #. All eigenvalues of the
observer {33) are located in tbe origin. Thus this
observer has a finite settling time. Combining the
control scheme {32}, the state observer (33) and the
parameter estimation scheme, we have the following
theorem.

Theorem 4.1 : There exisis D* > O suck that for
any design parameters D and W with 0 < D < D¢,
and for any bounded external disturbances d{k) and
plant uncertainties 6° (k) sotisfying

sup{||6* (R)li} < D

sup{|ld(k)I[} <W

the adaptive control law u(k) = —L(6(k), k)2(k)
makes the closed-loop system globally stable.

Proof (Sketch). We briefly sketch the proof (see
[15] for details). If there are no ummodelled plant
uncertainties and no external disturbances in the
plant model, the recursive least squares algorithm
has the following property:

fle(R)| < ea(kMlglk — 1} + (k)
where
ci{k) —+ 0, co(k) ~ 0, as k — oo,

Then, the proof of closed-loop stability directly fol-
Jows from the proof techniques given in [17], [18].
However, we now have from Lemma 3.1 ii),

lim sup{{le. (k)| — K (|6 (k — 1)}iD
+W /n(k — 1))} <0 with k > 1.

Thus, we use a discrete-time version of the Gron-
wall’s Lemma to finally get

llzlk + 81t < Kier(R)) Nz (R + calk)
Vke Zt, for some K, {(34)
where both ¢, (k) and ¢,(k) are functious of D and
W, and

2k +1) =] 9(k) &(k+1)] (35)
with

v'(k) =[y(k), - y(k—n+ 1) u(k), - u(k—n+1)].

Furthermore, for sufficiently large k, as D goes
{0 zero,

6 — Y <1for some v,
e — K, W for some K,.

We, therefore, can choose D* such that for any
plant uncertainties §(k) with sup{||6(k}||} < D, the
closed-loop is globally stable. m

5 Discussion

We applied the proposed adaptive control scheme to
the design of autopilot for air-to-air missiles using
bank-to-turn steering. Simulations have shown that
the control scheme works very well, even though
large errore have been observed in the estimation of
some of the time-varying parameters {15}, [16].

To achieve the robust stability, we had to as-
sume that the design parameter D > sup{||6{k)|[}
where 6(k) is the plant uncertainties. However, sim-
ulations without dead zone gave good performance.
This fact implies that our adaptive control scheme
without dead zone is, to a good extent, robust to
the plant uncertainties.

To guarantee the reachability of the estimated
model, we combined search technique with the stan-
dard recursive least squares algorithm. In this pa-
per, numerical procedures to compute ~(k) were
not discussed in details, but, in simulations, a very
simple scheme (if det(Yy4.(8(k), k)) is too small in
magaitude, then use the previous feedback gain)
gave good performance, which implies that compli-
cate search processes may be unnecessary in prac-
tice. Current work is centering on the numerical
procedures to choose y(k) which are practically use-
fal.
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