• Title/Summary/Keyword: Linear behavior

Search Result 2,513, Processing Time 0.033 seconds

Ussing's flux ratio theorem for nonlinear diffusive transport with chemical interactions

  • Bracken, A.J.;McNabb, A.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.747-752
    • /
    • 1994
  • Ussing's flux ratio theorem (1978) reflects a reciprocal relationship behavior between the unidirectional fluxes in asymmetric steady diffusion-convection in a membrane slab. This surprising result has led to many subsequent studies in a wide range of applications, in particular involving linear models of time dependent problems in biology and physiology. Ussing's theorem and its extensions are inherently linear in character. It is of considerable interest to ask to what extent these results apply, if at all, in situations involving, for example, nonlinear reaction. A physiologically interesting situation has been considered by Weisiger et at. (1989, 1991, 1992) and by McNabb et al. (1990, 1991) who studied the role of albumin in the transport of ligands across aqueous diffusion barriers in a liver membrane slab. The results are that there exist reciprocal relationships between unidirectional fluxes in the steady state, although albumin is chemically interacting in a nonlinear way of the diffusion processes. However, the results do not hold in general at early times. Since this type of study first started, it has been speculated about when and how the Ussing's flux ratio theorem fails in a general diffusion-convection-reaction system. In this paper we discuss the validity of Ussing-type theorems in time-dependent situations, and consider the limiting time behavior of a general nonlinear diffusion system with interaction.

  • PDF

The Effects of Elastic Modulus Coefficient and Linear Expansion Coefficient of Overhead Conductor on Sag Behavior (가공전선의 이도거동에서 탄성계수와 선팽창계수의 영향)

  • Kim, Byung-Geol;Kim, Shang-Shu;Wang, Yun-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.954-960
    • /
    • 2008
  • The effects of elastic modulus coefficient and linear expansion coefficient of overhead distribution power line(ACSR $58 mm^2$) on sag behavior in distribution line have been investigated to clarify the difference between specification and experimental level. The elastic modulus coefficients of Al wire and steel wire were $5,182.6 kgf/mm^2,\;18,348.8 kgf/mm^2$, respectively Therefore, the computational composition elastic modulus coefficient of the power line was $7,063.5 kgf/mm^2$, while that of experimentally measured was $7681.1 kgf/mm^2$. As a result, we found that elastic modulus coefficient which was experimentally measured was higher than that of computational by 8.7 %. However, when planner designs the sag of disoibution line, the elastic modulus coefficient of power line $8,400 kgf/mm^2$ should be generally adopted. These two different using values lead to the sag difference of 0.62 m. The other results will be discussed.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

Behavior in Solution and Mixing Ratio-Dependent Binding Modes of Carcinogenic Benzo[a]pyrene-7,8-dione to Calf Thymus DNA

  • Jin, Biao;Han, Sung Wook;Lee, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3015-3020
    • /
    • 2014
  • The behavior of benzo[a]pyrene-7,8-dione (BPQ) in aqueous solution and its interaction with native DNA was investigated using conventional absorption and linear dichroism (LD) spectroscopy. The appearance of a broad absorption maximum at long wavelengths and its proportional relationship to solvent polarizability suggested that BPQ adopts a aggregated state for all solutions examined. Disappearance of this absorption band at higher temperatures in aqueous solution also supported BPQ aggregation. When associated with DNA absorption spectral properties were essentially the same as that in aqueous solution. However, two isosbestic wavelengths were found in the concentration-dependent absorption spectrum of the BPQ-DNA complex, suggesting the presence of at least two or more DNA-bound BPQ species. Both species produced $LD^r$ spectra whose magnitude in BPQ absorption region is larger or comparable to that in the DNA absorption region, suggesting that the molecular BPQ plane is near perpendicular relative to the local DNA helical axis. Therefore, BPQ molecules are aligned along the DNA stem in both DNA-aggregated BPQ species.

The Non Newtonian Flow Mechanism and Rheological Properties of Polyurethane Melts (용융 폴리우레탄의 비 뉴톤 유동 메카니즘과 유변학적인 성질)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • The non-Newtonian flow curves of polyurethane melts were obtained by using a Physica cone-plate rheometer at various temperatures. The rheological parameters were obtained by applying non-Newtonian flow equation to the flow curves for polyurethane samples. When the polyurethane samples are under increasing-decreasing shear rate modes, the hysteresis loop and thixotropic behavior were shown. Polyurethane melts behave as strong gels when they are subjected to shear flow, but when the applied stress surpasses the yield stress, they exhibit non-linear viscoelasticity. Upon decreasing shear rate, its shear stress remains smaller than the values measured in the increasing shear rate mode, because of broken of its structure.

Non-linear Behavior of New Type Girder Filled by High-Strength Concrete (신형식 거더의 고강도 콘크리트 적용 시 비선형 거동 분석)

  • Choi, Sung-Woo;Lee, Hak;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.217-220
    • /
    • 2008
  • Recently, many studies about a high-strength concrete and composite structures are being progressed to get the more economic and stable result in the construction of structure all over the world. One of those studies is about CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure which is filled with a concrete and improve the stiffness and strength of the structure by the confinement effect of fillers to maximize the efficiency of structure and economic. In this study, non-linear behavior of CFTA girders filled with a general concrete and the high-strength concrete respectively were analyzed by using ABAQUS 6.5-1 and results were compared.

  • PDF