• Title/Summary/Keyword: Linear axis

Search Result 686, Processing Time 0.027 seconds

Study on Uncertainty Factors of Head Vibration Measurements

  • Cheung, Wan-Sup;Ryu, Je-Dam;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar Those conventional bite-bars are shown to present insufficient information to measure a complete 6 degree-of-freedom motion of head vibration. In order to overcome such limit, a theoretical measurement model that consists of four 3-axis linear accelerometers is suggested (Theoretical backgrounds presented in this paper shall have been addressed in the international congress of ICA 2004 in this April). It is shown to enable the direct measurement of three angular acceleration components and six angular velocity-dependent nonlinear terms. In audition to the three linear acceleration terms, those nine angular motion-dependent ones are found to make it possible to evaluate the general head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained using the developed 12-axis bite-bar are illustrated in the presentation of this paper, which illustrates what amount of measurement accuracy provides. But, this paper provides more detailed experimental data and extended uncertainty factors.

  • PDF

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

Limiting the sway on multi-storey un-braced steel frames bending on weak axis with partial strength connections

  • Tahir, Mahmood Md.;Ngian, Poi Shek
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.825-847
    • /
    • 2011
  • This paper investigates the design using wind-moment method for semi-rigid un-braced steel frames bending on weak axis. A limiting sway method has been proposed to reduce the frame sway. Allowance for steel section optimization between moment of inertia on minor axis column and major axis beam was used in conjunction with slope-deflection analysis to derive equations for optimum design in the proposed method. A series of un-braced steel frames comprised of two, four, and six bays ranging in height of two and four storey were studied on minor axis framing. The frames were designed for minimum gravity load in conjunction with maximum wind load and vice-versa. The accuracy of the design equation was found to be in good agreement with linear elastic computer analysis up to second order analysis. The study concluded that the adoption of wind-moment method and the proposed limiting sway method for semi-rigid steel frame bending on weak axis should be restricted to low-rise frames not more than four storey.

Evaluation Method of the Multi-axis Errors for Machining Centers (머시닝센터의 다축오차 평가 방법)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.

Development of Software Interpolator for Two-Axis Contouring Control (2축 윤곽제어를 위한 소프트웨어 보간자 개발에 관한 연구)

  • 김교형;이기설
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.389-396
    • /
    • 1988
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Conturing error of the system in linear and circular path is within .+-. 0.2mm under start stop pulse rate of stepping motor.

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Development and Performance Evaluation of Fine Stage for 3-DOF Error Compensation of a Linear Axis (직선 이송축의 3자유도 오차 보정을 위한 미세 구동 스테이지 개발 및 성능 평가)

  • Lee, Jae Chang;Lee, Min Jae;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • A fine stage is developed for the 3-DOF error compensation of a linear axis in order to improve the positioning accuracy. This stage is designed as a planar parallel mechanism, and the joints are based on a flexure hinge to achieve ultra-precise positioning. Also, the effect of Abbe's offsets between the measuring and driving coordinate systems is minimized to ensure an exact error compensation. The mode shapes of the designed stage are analyzed to verify the desired 3-DOF motions, and the workspace and displacement of a piezoelectric actuator (PZT) for compensation are analyzed using forward and inverse kinematics. The 3-DOF error of a linear axis is measured and compensated by using the developed fine stage. A marked improvement is observed compared to the results obtained without error compensation. The peak-to-valley (PV) values of the positional and rotational errors are reduced by 92.6% and 91.3%, respectively.

Initial Pole Position Estimation Algorithm of a Z-Axis PMLSM (Z축 선형 영구자석 동기전동기의 초기 자극위치 추정 알고리즘)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • This paper deals with the estimation method on the initial pole position of a z-axis permanent magnet linear synchronous motor(PMLSM) without magnetic pole sensors such as Hall sensors. The proposed method takes account of the gravitational force at z-axis and also the load conditions. The algorithm consists of two steps. The first step is to approximately estimate the initial q-axis by monitoring the movements due to the test current at predefined different test q-axes. The second step is to estimate the real q-axis as accurately as possible by using the outputs corresponding to torques due to the test current at three different test q-axes in order to avoid the effect of load mass variations. Experimental results on the z-axis PMLSM show good estimation characteristics of the proposed method irrespective of load mass conditions.