• Title/Summary/Keyword: Linear Vibrations

Search Result 224, Processing Time 0.025 seconds

Experimental Evaluation of Levitation and Imbalance Compensation for the Magnetic Bearing System Using Discrete Time Q-Parameterization Control (이산시간 Q 매개변수화 제어를 이용한 자기축수 시스템에 대한 부상과 불평형보정의 실험적 평가)

  • ;Fumio Matsumura
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.964-973
    • /
    • 1998
  • In this paper we propose a levitation and imbalance compensation controller design methodology of magnetic bearing system. In order to achieve levitation and elimination of unbalance vibartion in some operation speed we use the discrete-time Q-parameterization control. When rotor speed p = 0 there are no rotor unbalance, with frequency equals to the rotational speed. So in order to make levitatiom we choose the Q-parameterization controller free parameter Q such that the controller has poles on the unit circle at z = 1. However, when rotor speed p $\neq$ 0 there exist sinusoidal disturbance forces, with frequency equals to the rotational speed. So in order to achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is chosen such that the controller has poles on the unit circle at z = $exp^{ipTs}$ for a certain speed of rotation p ( $T_s$ is the sampling period). First, we introduce the experimental setup employed in this research. Second, we give a mathematical model for the magnetic bearing in difference equation form. Third, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller free parameter Q is assumed to be a proper stable transfer function. Fourth, we show that the controller free parameter which satisfies the design objectives can be obtained by simply solving a set of linear equations rather than solving a complicated optimization problem. Finally, several simulation and experimental results are obtained to evaluate the proposed controller. The results obtained show the effectiveness of the proposed controller in eliminating the unbalance vibrations at the design speed of rotation.

  • PDF

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder (비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.234-242
    • /
    • 2017
  • This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

A Study on the Russian Textile Design (러시아 텍스타일 디자인에 관한 연구 -혁명기를 중심으로-)

  • 이혜주
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.1
    • /
    • pp.25-38
    • /
    • 2000
  • This study focuses on the Russian Constructivist Textile Design in the post-revolutionary period, of the early 20th century. Russian textile of the time is highly valued in the west in terms of innovative changes in aesthetic directions, which has become one of the most important centers for the development of new textiles, or the origin of industrial design. Most of brilliant mass-production patterns were produced specially by the pioneers of constructivists such as Stepanova and Popova who were influenced by 'Maxism' through the Revolution regarded themselves as productivists for the proletariat. They were inspired by the avant-garde movements, which were involved with traditionalism, futuristic mechanism, stylization of nature, pure geometrical and abstract form. Early textile design was based on the relationship between the graphic methods of design and the technology because they regarded art as physical, intellectual and technical production. They created all the excitement made from the primary simplest forms of precise mathmatical shapes, such as the circle, the triangle, the rectangle and horizontle and vertical lines. These geometric design can be interpreted as the mechanization of the artists'labor, or methods in line with the technology of mass production, however partly roots in the rich tradition of Russian decorative art. On the other hand, stable crystalline construction on the surface reflect urban architectural complex, and the world of industry in graphic form. They were interested in illusion of movement, cinematic movement of vertical linear rhythms, optical formations and vibrations, by composing a multi-leveled constructions by several spatial planes, or color-field, and combining structures of several intersecting matrices, and superimposing parts of the forms on each other. All these characteristics of the Russian textile designs reflect the complex interactions between 'art and society' of Constructivist's idea and represent the traits of the epoch.

  • PDF

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

Active Control for Seismic Response Reduction Using Probabilistic Neural Network (지진하중을 받는 구조물의 능동제어를 위한 확률신경망 이론)

  • Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu;Choi, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • Recently structures become longer and higher because of the developments of new materials and construction techniques. However, such modern structures are susceptible to excessive structural vibrations, which may induce problems of serviceability and structural damages. In this paper we attempt to control structural vibration using the probabilistic neural network(PNN) and the artificial neural network(ANN) based on the training pattern that consist of only the structural state vector and the control force. The state vectors of the structure and control forces made by linear quadratic regulator(LQR) algorithm are used for training pattern of PNN and ANN. The proposed algorithm is applied for the vibration control of the three story shear building under Northridge earthquake. Control results by the proposed PNN and ANN are compared with each other.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Theoretical analysis for determation of allowable free span of subsea pipeline (해저 배관의 허용 노출길이 산정에 대한 이론해석)

  • Jung Dong-Ho;Lee Yong-Doo;Park Han-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.54-62
    • /
    • 2003
  • The free span of a subsea pipeline due to seabed scouring can result in structural failure by severe ocean environmental loads and vortex induced vibrations. This Paper examines the safety of subsea pipelines with free spans under axial compressive load. The variation of allowable lengths of static and dynamic free spans is examined for generalized boundary conditions. The free span is modelled as a beam with an elastic foundations and the boundary condition is replaced by linear and rotational springs at each end. The static and dynamic free span curves are obtained with a function of non-dimensional parameters. A case study is carried out to introduce the application method of the curve. The results of this study can be usefully applied for the design of subsea pipelines with a free span.

  • PDF

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

Optimum positioning of friction support for vibration reduction in piping system (배관 진동저감 마찰 지지대 최적 위치 선정)

  • Jaeseok, Heo;Yong Hoon, Jang;Seunghun, Baek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.680-690
    • /
    • 2022
  • Vibrations in the pipe system trigger fatigue-related issues and lead to fatal other problems caused by pipe damage. There are numerous studies to analyze and reduce the cause of pipe vibration, among which a small number of studies are being conducted on pipe vibration reduction using friction supports. The study of friction supports, however, focused only on predicting and evaluating the performance of the friction supports and seldomly considered the design perspective of the install location of the supports. Therefore, this study intends to suggest the optimization process for finding the best installation region of friction support to attenuate the vibration of entire piping system. The optimal position of the friction support is predicted only by linear analysis to guarantee optimization efficiency in the design process. The designed friction support location is verified by time domain analysis.