• Title/Summary/Keyword: Linear Transformation

Search Result 744, Processing Time 0.031 seconds

수정된 Karmarkar 기법과 이의 효율성

  • Jeong, Seong-Jin;Lee, Chang-Hun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 1987
  • Karmakar suggested two methods to transform the general linear programming into his specially structured linear programming problem. We show that there are bad cases that cause difficulties in the use of Karmakar's methods. We also develop a new transformation method which can handle those difficulties.

  • PDF

Impact Analysis of Buildings for KOMPSAT-3 Image Co-registration (KOMPSAT-3 위성영상의 상대기하보정에 대한 건물의 영향 분석)

  • Park, Jueon;Kim, Taeheon;Yun, Yerin;Lee, Chabin;Lee, Jinmin;Lee, Changno;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.293-304
    • /
    • 2022
  • In this study, to analyze the effect of buildings on the image co-registration performance, co-registration results are compared according to the presence or absence of matching points extracted from buildings. To remove the matching points extracted from buildings, a building mask generated by extracting building objects from the digital topographic map was used. In addition, matching points extraction performance and image co-registration accuracy were analyzed according to the magnitude of the convergence angle. Image co-registration results were compared by applying the affine and piecewise linear transformation models, respectively. According to the experimental results, the affine transformation model showed an overall improvement in accuracy after removing the matching points extracted from buildings. On the other hand, the piecewise linear transformation model improved the accuracy at the checkpoints including the surrounding buildings, but the accuracy improvement was not significant at checkpoints in the flat area without the existence of buildings. In addition, when the piecewise linear transformation model was applied, stable accuracy of less than 2 pixels was derived from images with a convergence angle of 20° or less.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads (선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

Dynamic Analysis of a Linear Feeder for Uniform Transformation of Grains (곡물의 균일한 이송을 위한 리니어 피더의 동특성 해석)

  • Lee, Kyu-Ho;Kim, Syung-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • The purpose of this study is to improve the performance of a linear feeder that can transport grains uniformly. In order to analyze the dynamic behaviors of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the feeder motion in the space is visualized by using graphic computer software. In addition, a dynamic model of the feeder is established for a multi-body dynamics simulation. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. From the experimental and the computational approaches, an optimal dynamic motion is obtained for uniform transportation of grains. Furthermore, we also consider the determination of design parameters for optimal dynamic motion such as centroid, stiffness, and damping coefficient of the feeder system.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Static Loads (등가정하중을 이용한 비선형 거동 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.999-1004
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

  • PDF

REPRODUCING KERNEL KREIN SPACES

  • Yang, Mee-Hyea
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.659-668
    • /
    • 2001
  • Let S(z) be a power series with operator coefficients such that multiplication by S(z) is an everywhere defined transformation in the square summable power series C(z). In this paper we show that there exists a reproducing kernel Krein space which is state space of extended canonical linear system with transfer function S(z). Also we characterize the reproducing kernel function of the state space of a linear system.

A Robust Estimation Procedure for the Linear Regression Model

  • Kim, Bu-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.2
    • /
    • pp.80-91
    • /
    • 1987
  • Minimum $L_i$ norm estimation is a robust procedure ins the sense that it leads to an estimator which has greater statistical eficiency than the least squares estimator in the presence of outliers. And the $L_1$ norm estimator has some desirable statistical properties. In this paper a new computational procedure for $L_1$ norm estimation is proposed which combines the idea of reweighted least squares method and the linear programming approach. A modification of the projective transformation method is employed to solve the linear programming problem instead of the simplex method. It is proved that the proposed algorithm terminates in a finite number of iterations.

  • PDF

A UNITARY LINEAR SYSTEM ON THE BIDISK

  • Yang, Meehyea;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.511-521
    • /
    • 2007
  • Let S($z_1$, $z_2$) be a power series with operator coefficients such that multiplication by 5($z_1$, $z_2$) is a contractive transformation in the Hilbert space $\mathbf{H}_2$($\mathbb{D}^2$, C). In this paper we show that there exists a Hilbert space D($\mathbb{D}$,$\bar{S}$) which is the state space of extended canonical linear system with a transfer fucntion $\bar{S}$(z).

Stabilizing Controller Design for Linear Time-Varying Systems Using Ackerman-like Formula

  • Choi, Jae-Weon;Lee, Ho-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.1-125
    • /
    • 2001
  • This paper deals with the eigenvalue assignment technique for linear time-varying systems to achieve feedback stabilization. For this, we introduce the novel eigenvalue concepts. Then, we propose the Ackerman-like formula for linear time-varying systems. It is believed that this technique is the generalized version of the Ackerman formula forlinear time-invariant systems. The advantages of the proposed technique are that it does not require the transformation of the original system into the phase-variable form nor the computation of eigenvalues of the original system.

  • PDF