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A NEW REPRESENTATION ALGORITHM
IN A FREE GROUP

Su-Jeong Choi

Abstract. This paper presents a new representation algorithm which
computes the representation for elements of a free group generated by two
linear fractional transformations and also the justification of the algorithm
in order to show how it operates correctly and efficiently according to
inputs.

1. Introduction

Let n ∈ N with n ≥ 3 and Γn a free group [5] generated by two linear
fractional transformations An =

[
1 n
0 1

]
and Bn =

[
1 0
n 1

]
. Then every

element of Γn can be represented by a reduced word in {An, Bn}±, called
the Xn-representation with Xn = {An, Bn}. Since An and Bn are the cases
of A1

n and B1
n, every element of Γn can also be represented by a reduced

word in {A1, B1}±, called the X1-representation with X1 = {A1, B1}. Namely,
the Xn-representation of each element of Γn enables computation of the X1-
representation of the element. The X1-representation of each element of Γn is
one of the following forms

A1
nu1B1

nu2 · · ·B1
num−1A1

num ,
A1

nu1B1
nu2 · · ·A1

num−1B1
num ,

B1
nu1A1

nu2 · · ·A1
num−1B1

num ,
B1

nu1A1
nu2 · · ·B1

num−1A1
num ,

where ui is a nonzero integer and m ∈ N.
In 2004, Grigoriev and Ponomarenko introduced the homomorphic public-

key cryptosystem [4]. Then the secret key n is hidden into the decryption
scheme including the Xn-representation algorithm which outputs the Xn-repres
entation of the ciphertext in the process of the decryption. Later on, this Xn-
representation algorithm is modified to make it more clear and efficient in [2].
On the other hand, the attacker must strive to find the secret key n of the
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cryptosystem. So the motivation of the design of the X1-representation algo-
rithm derives from cryptanalysis of the homomorphic public-key cryptosystem.
Consequently the X1-representation for elements of Γn can be used to break
the homomorphic public-key cryptosystem in [3].

In this paper, the X1-representation algorithm is presented with the justifi-
cation of the algorithm, which is stated explicitly with some properties of the
two linear fractional transformations in order to show how it operates correctly
and efficiently according to inputs. Note that the material of this paper is
extracted from the PhD thesis of the author [1].

2. Representation algorithm in a free group Γn

In this section we introduce a new representation algorithm to compute the
X1-representation for elements of Γn and also prove correctness of the algorithm
with some properties of two linear fractional transformations An

u and Bn
u for

a nonzero integer u. Let D be a unit open disk in the complex plane C with
the center 0, i.e., D = {z ∈ C | |z| < 1} and a complement of the closure of D,
Dc = C− D̄ = {z ∈ C | |z| > 1}. 1X1 denotes the empty word.

Assume that n is unknown and M ∈ Γn. The following representation
algorithm outputs the X1-representation of M either for z = 1

2 or for z = 2.
Otherwise, it does the error message ε. Once the algorithm first outputs the
X1-representation of M for one of two z values, it does not need to run for the
other z value as the goal is achieved.

Algorithm

Step 0

w ← 1X1

L←M

Step 1

(1) L(z) = 0, |L(z)| = 1, L(z) =∞⇒ output ε.

(2) |L(z)| > 1⇒ compute e, µ s.t. L(z) = e + µ, e ∈ Z, − 1
2

< µ ≤ 1
2

and go to Step 2.

(3) |L(z)| < 1⇒ compute e, µ s.t. 1
L(z)

= e + µ, e ∈ Z, − 1
2

< µ ≤ 1
2

and go to Step 3.

Step 2

(1) C ← A1
e and w ← wC.

(2) C = I ⇒ output ε.

(3) L← C−1L

(4) L = I ⇒ output w. Otherwise, return Step 1.

Step 3

(1) C ← B1
e and w ← wC.

(2) C = I ⇒ output ε.

(3) L← C−1L

(4) L = I ⇒ output w. Otherwise, return Step 1.

Next, some properties of the two linear fractional transformations are as
follows.
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Lemma 2.1 ([2]). For z ∈ D, An
u(z) ∈ Dc.

Lemma 2.2 ([2]). For z ∈ Dc, Bn
u(z) ∈ D.

Theorem 2.3 ([2]). The following properties hold:
(1) An

u1Bn
u2 · · ·Bn

um−1An
um ∈ Dc for z ∈ D.

(2) An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Dc for z ∈ Dc.
(3) Bn

u1An
u2 · · ·An

um−1Bn
um ∈ D for z ∈ Dc.

(4) Bn
u1An

u2 · · ·Bn
um−1An

um ∈ D for z ∈ D.

Theorem 2.4. Let n ≥ 3 and z ∈ R such that |z| < 1
2 . Then |An

u(z)| > 5
2 .

Proof. For n ≥ 3 and z ∈ R s.t. |z| < 1
2 , by Lemma 2.1 An

u(z) = nu+ z ∈ Dc.
If u ≥ 1, then 5

2 ≤ nu− 1
2 < nu + z < nu + 1

2 and so An
u(z) > 5

2 . If u < −1,
then nu− 1

2 < nu + z < nu + 1
2 < − 5

2 and so An
u(z) < − 5

2 . ¤

Theorem 2.5. For n ≥ 3 and z ∈ R ∩Dc, |Bn
u(z)| < 1

2 .

Proof. Let n ≥ 3 and z ∈ R ∩ Dc. If u ≥ 1, then 0 < 1
nu+ 1

z

< 1
nu−1 ≤ 1

2

and so 0 < Bn
u(z) < 1

2 . If u < −1, then − 1
2 < 1

nu+1 < 1
nu+ 1

z

< 0 and so

− 1
2 < Bn

u(z) < 0. ¤

It should be noticed that both properties above are not guaranteed for n ≥ 2.
In other words, let n ≥ 2 and z ∈ R ∩ Dc, then |Bn

u(z)| < 1, but for n ≥ 3,
|Bn

u(z)| < 1
2 . Now the justification of the algorithm is being carried out with

some characteristics of the two linear fractional transformations. So it shows
how the algorithm works correctly and efficiently according to inputs. For the
sake of avoiding the similarity of proofs, one of the X1-representation forms is
taken for the verification of the algorithm.

Theorem 2.6. If a matrix M = An
u1Bn

u2 · · ·An
um−1Bn

um is input to the
algorithm (z = 1

2 ) with even m ≥ 2, then it outputs ε as the error message.

Proof. Let

M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn and β1 = Bn
u2 · · ·An

um−1Bn
um(

1
2
).

Then L( 1
2 ) = An

u1Bn
u2 · · ·An

um−1Bn
um( 1

2 ) = nu1 + β1.
Case 1 : If n = 3 and um = −1, then |Bn

um( 1
2 )| = 1 and in Step 1 of the first

iteration, by Theorem 2.3(2),

L(1
2 ) = An

u1Bn
u2 · · ·Bn

um−2(num−1 − 1) ∈ Dc.

As An
um−1Bn

um(1
2 ) = An

um−1(−1) ∈ Dc, by Theorem 2.5, |β1| < 1
2 , so that

e = nu1 and µ = β1.
Case 2 : If n 6= 3 or um 6= −1, then |Bn

um( 1
2 )| < 1. By Theorem 2.3(1),

L( 1
2 ) = An

u1Bn
u2 · · ·An

um−1( 1
num+2 ) ∈ Dc
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and by Theorem 2.5, |β1| < 1
2 , so that e = nu1 and µ = β1. In Step 2 of

the first iteration of those cases, C = A1
e = A1

nu1 , w = wC = A1
nu1 and

L = C−1L = Bn
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

Suppose that for 1 ≤ i − 1 < m − 2, in Step 2 of the i − 1th iteration,
L = C−1L = Bn

uiAn
ui+1 · · ·An

um−1Bn
um or in Step 3 of the i− 1th iteration

L = C−1L = An
uiBn

ui+1 · · ·An
um−1Bn

um according as i− 1 is odd or even.
For even i, let L = Bn

uiAn
ui+1 · · ·An

um−1Bn
um in Step 1 of the ith iteration

and αi = An
ui+1Bn

ui+2 · · ·An
um−1Bn

um( 1
2 ). Then

L( 1
2 ) = Bn

ui(αi) = 1
nui+

1
αi

.

Case 1 : If n = 3 and um = −1, then |Bn
um( 1

2 )| = 1 and by Theorem 2.3(3),

L( 1
2 ) = Bn

uiAn
ui+1 · · ·Bn

um−2(num−1 − 1) ∈ D.

As An
um−1Bn

um( 1
2 ) = An

um−1(−1) ∈ Dc, by Theorem 2.5,

|Bn
ui+2 · · ·An

um−1Bn
um( 1

2 )| < 1
2 .

By Theorem 2.4, 1
|αi| < 2

5 and as 1
L( 1

2 )
= nui + 1

αi
,

e = nui and µ = 1
αi

.

Case 2 : If n 6= 3 or um 6= −1, then |Bn
um( 1

2 )| < 1 and by Theorem 2.3(4),

L( 1
2 ) = Bn

uiAn
ui+1 · · ·An

um−1( 1
num+2 ) ∈ D.

By Lemma 2.1, An
um−1( 1

num+2 ) ∈ Dc and by Theorem 2.5,

|Bn
ui+2 · · ·An

um−1Bn
um( 1

2 )| < 1
2 .

By Theorem 2.4, 1
|αi| < 2

5 and 1
L( 1

2 )
= nui + 1

αi
, so that e = nui and µ = 1

αi
.

In Step 3 of the ith iteration of those cases, C = B1
e = B1

nui , w = wC =
A1

nu1B1
nu2 · · ·A1

nui−1B1
nui and L = C−1L = An

ui+1 · · ·An
um−1Bn

um 6= I.
So return Step 1.

For odd i, let L = An
uiBn

ui+1 · · ·An
um−1Bn

um and βi = Bn
ui+1 · · ·An

um−1

Bn
um( 1

2 ). Then L( 1
2 ) = nui + βi.

Case 1 : If n = 3 and um = −1, then |Bn
um( 1

2 )| = 1 and by Theorem 2.3(2),

L( 1
2 ) = An

uiBn
ui+1 · · ·Bn

um−2(num−1 − 1) ∈ Dc.

As An
um−1Bn

um( 1
2 ) = An

um−1(−1) ∈ Dc, by Theorem 2.5, |βi| < 1
2 . Hence

e = nui and µ = βi.

Case 2 : If n 6= 3 or um 6= −1, then |Bn
um( 1

2 )| < 1. By Theorem 2.3(1),

L( 1
2 ) = An

uiBn
ui+1 · · ·An

um−1( 1
num+2 ) ∈ Dc
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and by Theorem 2.5, |βi| < 1
2 , so that e = nui and µ = βi. In Step 2 of the ith

iteration of those cases,

C = A1
e = A1

nui , w = wC = A1
nu1B1

nu2 · · ·B1
ui−1A1

nui

and L = C−1L = Bn
ui+1 · · ·An

um−1Bn
um 6= I.

So return Step 1.
For i = m−1, the algorithm runs with L = C−1L = An

um−1Bn
um in Step 3

of the m− 2th iteration.
Case 1 : If n = 3 and um = −1, then |Bn

um( 1
2 )| = 1 and

L( 1
2 ) = An

um−1Bn
um( 1

2 ) = An
um−1(−1) ∈ Dc.

In Step 1 of the m− 1th iteration,

e = num−1 − 1 and µ = 0.

In Step 2 of the m− 1th iteration,

C = A1
e = A1

num−1−1,

w = wC = A1
nu1B1

nu2 · · ·B1
num−2A1

num−1−1

and
L = C−1L = A1Bn

um 6= I.

So return Step 1.
For i = m of case 1, the algorithm runs with L = A1Bn

um in Step 1 of the
mth iteration and then

L(1
2 ) = A1Bn

um( 1
2 ) = A1(−1) = 0.

Therefore the algorithm outputs ε as the error message and then it terminates.
Case 2 : If n 6= 3 or um 6= −1, then |Bn

um( 1
2 )| < 1 and

L( 1
2 ) = An

um−1Bn
um( 1

2 ) = An
um−1( 1

num+2 ) ∈ Dc.

Since |Bn
um( 1

2 )| ≤ 1
2 ,

e = num−1 and µ = 1
num+2 .

In Step 2 of the m− 1th iteration,

C = A1
e = A1

num−1 ,

w = wC = A1
nu1B1

nu2 · · ·B1
num−2A1

num−1

and L = C−1L = Bn
um 6= I.

So return Step 1.
For i = m of case 2, the algorithm runs with L = Bn

um in Step 1 of the mth
iteration.
Case 1 : If n = 3 and u = −1, then in Step 1 of the mth iteration, |L( 1

2 )| = 1.
So the algorithm outputs ε as the error message and then it terminates.
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Case 2 : If n 6= 3 or um 6= −1, then in Step 1 of the mth iteration, |L( 1
2 )| ≤ 1

2
and so

e = 1
L( 1

2 )
= num + 2 and µ = 0.

In Step 3 of the mth iteration,

C = B1
e = B1

num+2,

w = wC = A1
nu1B1

nu2 · · ·B1
num−2A1

num−1B1
num+2

and

L = C−1L = B1
−num−2Bn

um = B1
−2 6= I.

So return Step 1.
For i = m + 1 of case 2, the algorithm runs with L = C−1L = B1

−2 in
Step 3 of the mth iteration and then

L( 1
2 ) = B1

−2(1
2 ) = ∞

in Step 1 of the m + 1th iteration. Therefore the algorithm outputs ε as the
error message and then it terminates. ¤

Theorem 2.7. If a matrix M =An
u1Bn

u2 · · ·An
um−1Bn

um is input to the algo-
rithm (z = 2) with even m ≥ 2, then it outputs A1

nu1B1
nu2 · · ·A1

num−1B1
num

as the X1-representation of M .

Proof. Let

M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn and β1 = Bn
u2 · · ·An

um−1Bn
um(2).

Then

L(2) = An
u1Bn

u2 · · ·An
um−1Bn

um(2) = nu1 + β1.

By Theorem 2.3(2), L(2) ∈ Dc and by Theorem 2.5, |β1| < 1
2 , so that e = nu1

and µ = β1. In Step 2 of the first iteration,

C = A1
e = A1

nu1 , w = wC = A1
nu1

and L = C−1L = Bn
u2 · · ·An

um−1Bn
um 6= I.

So return Step 1.
Assume that for 1 ≤ i − 1 < m − 1, in Step 3 of the i − 1th iteration

L = C−1L = An
uiBn

ui+1 · · ·An
um−1Bn

um or in Step 2 of the i− 1th iteration
L = C−1L = Bn

uiAn
ui+1 · · ·An

um−1Bn
um according as i− 1 is even or odd.

For even i, in Step 1 of the ith iteration, let L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um

∈ Γn and αi = An
ui+1 · · ·An

um−1Bn
um(2). Then

L(2) = Bn
ui(αi) = 1

nui+
1

αi

.

By Theorem 2.5, |L(2)| < 1
2 and by Theorem 2.4, 1

|αi| < 2
5 , so that
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e = nui and µ = 1
αi

.

In Step 3 of the ith iteration, C = B1
e = B1

nui , w = wC = A1
nu1B1

nu2 · · ·
A1

nui−1B1
nui and L = C−1L = An

ui+1 · · ·An
um−1Bn

um 6= I. So return Step 1.
For odd i, let L = An

uiBn
ui+1 · · ·An

um−1Bn
um ∈ Γn in Step 1 of the ith

iteration and βi = Bn
ui+1 · · ·An

um−1Bn
um(2). Then

L(2) = An
uiBn

ui+1 · · ·An
um−1Bn

um = nui + βi

and by Theorem 2.5, |βi| < 1
2 , so that e = nui and µ = βi. In Step 2 of the

ith iteration, C = A1
e = A1

nui , w = wC = A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and
L = C−1L = Bn

ui+1 · · ·An
um−1Bn

um 6= I. So return Step 1.
If i = m, then the algorithm runs with L = Bn

um in Step 1 of the mth
iteration and by Theorem 2.5, |L(2)| < 1

2 . As 1
L(2) = num + 1

2 ,

e = num and µ = 1
2 .

In Step 3 of the mth iteration,

C = B1
e = B1

num , w = wC = A1
nu1B1

nu2 · · ·A1
num−1B1

num

and
L = C−1L = B1

−numBn
um = I.

Hence the algorithm outputs

A1
nu1B1

nu2 · · ·A1
num−1B1

num

as the X1-representation of M and then it terminates. ¤

Theorem 2.8.

(1) If a matrix M = An
u1Bn

u2 · · ·Bn
um−1An

um is input to the algorithm
(z= 1

2 ) with odd m ≥ 3, then it outputs A1
nu1B1

nu2 · · ·B1
num−1A1

num

as the X1-representation of M .
(2) If a matrix M = An

u1Bn
u2 · · ·Bn

um−1An
um is input to the algorithm

(z=2) with odd m ≥ 3, then it outputs ε as the error message.
(3) If a matrix M = Bn

u1An
u2 · · ·Bn

um−1An
um is input to the algorithm

(z= 1
2 ) with even m ≥ 2, then it outputs B1

nu1A1
nu2 · · ·B1

num−1A1
num

as the X1-representation of M .
(4) If a matrix M = Bn

u1An
u2 · · ·Bn

um−1An
um is input to the algorithm

(z=2) with even m ≥ 2, then it outputs ε as the error message.
(5) If a matrix M = Bn

u1An
u2 · · ·An

um−1Bn
um is input to the algorithm

(z= 1
2 ) with odd m ≥ 3, then it outputs ε as the error message.

(6) If a matrix M = Bn
u1An

u2 · · ·An
um−1Bn

um is input to the algorithm
(z=2) with odd m ≥ 3, then it outputs B1

nu1A1
nu2 · · ·A1

num−1B1
num

as the X1-representation of M .

Proof. It is similar to the proofs of Theorem 2.6 and Theorem 2.7. ¤
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3. Conclusions

The purpose of this paper is to design a new representation algorithm for
elements of a free group generated by the two linear fractional transformations
and also show proofs of correctness of the algorithm, which are dominant in
this note. This work seemingly looks more or less straightforward, but indeed,
it clarifies even subtle cases in which the algorithm may not work properly.
Subsequently the algorithm comes to have computational efficiency. Moreover
some theoretical background of the algorithm is apparently shown with the
properties of the two linear fractional transformations. Further from combina-
torial group theoretical point of view, the X1-representation algorithm might
give an insight to design algorithms for other groups such as symplectic group
Sp(2, 1), special linear group SL(2,Z) or general linear group GL(2,Z). In
practice programming of the algorithm and demonstrations with experiments
appear in [1].
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