• 제목/요약/키워드: Linear Thermal Transmittance

검색결과 15건 처리시간 0.026초

Thermal Performance Evaluation of Junction Thermal Bridge according to Installation Position of Window

  • Lee, Soo-Man;Kim, Dong-Yun;Ahn, Jung-Hyuk;Eom, Jae-Yong;Shin, U-Cheul
    • KIEAE Journal
    • /
    • 제17권3호
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: "Building energy design standard" is used to limit the thermal transmittance of building in Korea. However, it only covers the insulation standard for each appropriate elements of a building, not the thermal performance of Junction thermal bridge of windows and doors installed in wall. Therefore in this study, we have evaluated the thermal performance of Junction thermal bridge depending on installation method and position of windows and provide it as design data. Method: We analyzed heat transfer of 4-Track sliding window and tilt & turn triple glazed window that are placed in the first class category on window energy efficiency rating using Window 7.4 and Therm 7.4. Result : First, linear thermal transmittance of 4-Track sliding window differs by 2.2 times or more depending of installation method and location. It is higher than the linear thermal transmittance, 0.01W/mK, proposed by Passivhaus. Second, linear thermal transmittance of Tilt & turn triple glazed window differs by 7.7 times or more depending of installation method and location. The average linear thermal transmittance was less than 0.01W /mK when windows were installed on the internal wall insulation by the fixed hardware attachment method. Third, the thermal losses of a window caused by a junction thermal bridge are inversely proportional to the window area and converge gradually as the area increased.

The Study on Thermal Performance Evaluation of Building Envelope with VIPs

  • Jeon, Wan-Pyo;Kwon, Gyeong-Jin;Kim, Jin-Hee;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.5-10
    • /
    • 2016
  • Purpose: The energy consumption in buildings has continuously increased in some countries and it reaches almost 25% of the total energy use in korea. Therefore there are various efforts to minimize energy consumption in buildings, and the regulations on building envelope insulation have been tightened up gradually. To satisfy the building regulation, the use of vacuum insulation panels(VIPs) is increasing. VIP is a high performance insulation materials, so that it can be thinner than conventional insulation material. When VIP is applied in a building, it may cause thermal bridge, which occurs due to very low thermal conductivity compared to other building materials and the envelope of VIPs. Method: This study designed the capsulized VIPs using conventional insulation for reduction of the thermal bridge. Then designed VIPs were applied to a wall. The linear thermal transmittance and the effective thermal conductivity were analyzed by HEAT2 simulation program for two dimensional steady-state heat transfer. The result compared with a wall with non-capsulized VIPs. Result: It analyzed that the wall with capsulized VIPs had lower linear thermal transmittance and reduced the difference of the effective thermal transmittance with one dimensional thermal transmittance compared to that of the wall with non-capsulized VIPs.

외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량 (Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation)

  • 이규남;정근주
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

공동주택의 단열형태별 선형열관류율 평가 (An Evaluation of the Linear Thermal Transmittance for the Internal Insulation versus the External Insulation in Apartment Housings)

  • 이종성;이도헌;전명훈
    • 토지주택연구
    • /
    • 제5권4호
    • /
    • pp.315-323
    • /
    • 2014
  • 본 연구는 외단열시스템 성능평가의 주요인자인 선형열관류율을 국제규격(ISO)에서 제시하고 있는 평가방법에 의거, 내단열시스템 대비 외단열시스템의 열성능에 대한 우수성을 정량적으로 파악하고, 향후 외단열시스템의 열성능 평가를 위한 기초자료로의 활용을 목적으로 한다. 이를 위해 공동주택의 대표적 열교부위인 3개 부위를 내단열과 외단열 시스템으로 설계하고, 각 부위별 단열형태별로 선형열관류율을 평가하였다. 그 결과, 외벽-발코니 슬라브 부위는 열교차단재 설치가 필수적인 것으로 분석되었으며, 열교차단재를 설치할 경우 외단열시스템이 내단열시스템보다 선형열관류율이 1/2 이상 줄어드는 것으로 나타났다. 측벽-발코니 부위와 같이 슬라브가 외부로 돌출되지 않는 구조에서는 외단열시스템을 적용할 경우, 선형열관류율이 거의 0인 것으로 나타났다. 내단열로 설계된 외벽-경계벽의 경우, 선형열관류율은 0.451W/m 로 내단열로 설계된 외벽-발코니 슬라브 등 열교가 있는 부위와 비슷한 값을 보이며, 외단열로 설치될 경우 이 또한 거의 0인 것으로 나타났다. 향후, 공동주택의 외단열시스템 도입 및 성능평가를 위해서는 국제기준을 적용한 국내 평가기준의 제도화마련이 필요하며, 특히 제도화 마련과정에서 선형열관류율 계산 인자 중의 하나인 벽체길이의 계산방법은 국가차원의 결정이 필요할 것으로 판단된다.

공동주택에 적용 가능한 건식 외벽시스템 시공에 따른 단열성능 검토 (Thermal Performance of Developed Cladding Systems on Multi-Family Residential Buildings)

  • 홍구표;강지연;김형근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.267-268
    • /
    • 2018
  • The purpose of this study was to analyze the thermal performance of a cladding system which developed for easy maintenance and flexibility and installed on a long-life housing. The developed cladding systems were finished mock-up test at an authorized certification laboratory and were satisfied with the standard of the external wall system. The surface temperature and linear thermal transmittance of the cladding system were investigated by using the THERM as a simulation program. The joining part between the cladding systems had a weakness of condensation resistance. The surface temperature of the joining part was improved by filling and adding insulation.

  • PDF

모바일 기반 온실 냉난방 부하 산정 프로그램 개발 (Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile)

  • 문종필;방지웅;황정수;장재경;윤성욱
    • 생물환경조절학회지
    • /
    • 제30권4호
    • /
    • pp.419-428
    • /
    • 2021
  • 모바일 기반 온실에너지 계산프로그램을 제작하기 위해 먼저 주요 단일 피복재 10종 및 보온재 16종에 대한 열관류율 측정하였다. 또한 피복 및 보온재를 이중 및 삼중으로 다층 설치할 때 열관류율 추정을 위하여 이중 설치시 24조합, 삼중설치 시 59조합에 대한 열관류율을 핫박스를 이용하여 측정하였다. 단일 피복재에서는 PE필름(0.08mm) 대비 PO필름(0.15mm)이 가장 열관류율이 가장 작고 열절감율이 가장 큰 것으로 나타났다. 단일 보온재에서는 열관류율에서는 외피가 있는 5겹의 다겹보온커튼이 가장 보온력이 좋은 것으로 나타났다. 또한 단일자재에 대한 열관류율 값과 열저항값을 이용한 피복 및 보온재의 다층설치시의 총 열관류율 값을 산정하였고 실측 값과의 오차를 보정하는 선형회귀식을 도출하였다. 단일재료의 열관류율값에 의한 피복 및 보온재의 다층설치시 열관류율 추정 모형을 개발한 결과 모형평가지수가 0.90(0.5 이상일 때 양호)으로 나타나 추정치가 실측치를 매우 잘 재현 하고 있는 것으로 나타났다. 또한 시험온실을 통한 실증시험결과 예측된 열절감율이 실측치보다 상대오차 2%로 작게 나타나는 것으로 평가되었다. 이러한 연구결과를 기반으로 모바일 기반의 온실 에너지계산 프로그램을 개발하였다. 이 프로그램은 HTML5 표준 웹 기반 모바일 웹 애플리케이션으로 구현하였으며 N-Screen 지원을 통해 다양한 모바일 장치 및 PC 브라우저에서 동작이 가능하게 제작되었다. 또한 온실 피복(12종) 및 보온재(16종)의 조합별 열관류율 및 난방부하계수를 제공하여 농민이 모바일로 온실 위치, 형태 및 피복·보온재 등을 반영한 최대 주야간 냉난방부하 및 기간 난방부하를 산정할 수 있다. 대상 온실의 에너지 소비량에 대한 평가가 가능하며 온실의 지역 및 형태에 따라 피복 및 보온재의 최적 선택으로 에너지 절감형 온실 설계가 가능할 것으로 판단되었다.

PECVD로 제조된 나노결정실리콘 비선형 광학적특성 (Non-linear optical properties of PECVD nanocrystal-Si nanosecond excitation)

  • 양현훈;김한울;김주회;김철중;이창권
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • A study of the non-linear optical properties of nanocrystal-Si embedded in SiO2 has been performed by using the z-scan method in the nanosecond and femtosecond ranges. Substoichiometric SiOx films were grown by plasma-enhanced chemical-vapor deposition(PECVD) on silica substrates for Si excesses up to 24 at/%. An annealing at $1250^{\circ}C$ for 1 hour was performed in order to precipitate nanocrystal-Si, as shown by EFTEM images. Z-scan results have shown that, by using 5-ns pulses, the non-linear process is ruled by thermal effects and only a negative contribution can be observed in the non-linear refractive index, with typical values around $-10-10cm^2/W$. On the other hand, femtosecond excitation has revealed a pure electronic contribution to the nonlinear refractive index, obtaining values in the order of 10-12 cm2/W. Simulations of heat propagation have shown that the onset of the temperature rise is delayed more than half pulse-width respect to the starting edge of the excitation. A maximum temperature increase of ${\Delta}T=123.1^{\circ}C$ has been found after 3.5ns of the laser pulse maximum. In order to minimize the thermal contribution to the z-scan transmittance and extract the electronic part, the sample response has been analyzed during the first few nanoseconds. By this method we found a reduction of 20% in the thermal effects. So that, shorter pulses have to be used obtain just pure electronic nonlinearities.

  • PDF

Sea surface temperature estimation from remote measurement of the thermal radiation

  • Mima, Kazuhiko;Satoh, Makoto;Moriyama, Masao;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.12-15
    • /
    • 1994
  • To establish the sea surface temperature estimation scheme for the upcoming advanced remote sensor, the quasi-analytical solution of the approximated radiative transfer equation which express the radiative transfer process of the radiant energy radiated from the sea surface to the satellite is approximated into the non-linear equation. To solve the simultaneous approximated radiative transfer equation which express the radiative transfer process of the radiant energy radiated from the sea surface to the satellite is approximated into the nonlinear equation. To solve the simultaneous approximated radiative transfer equation at each channel, the constrained non-linear optimization technique is adopted. To define the coefficients of the approximated radiative transfer equation and the constraints, the satellite detected radiance and the total transmittance are computed from the 1350 kinds of simulated atmosphere / surface models via radiative transfer code. The verification from the simulated data show the sufficient result.

  • PDF

Micro gadolinium oxide dispersed flexible composites developed for the shielding of thermal neutron/gamma rays

  • Boyu Wang;Xiaolin Guo;Lin Yuan;Qinglong Fang;Xiaojuan Wang;Tianyi Qiu;Caifeng Lai;Qi Wang;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1763-1774
    • /
    • 2023
  • In this study, a series of flexible neutron/gamma shielding composites are fabricated through the doping of Gd2O3 into the matrix of SEBS with (MGd2O3: MSEBS) % from 5% to 100%. Neutron transmittance test shows an exponential attenuation with the increase of areal density of Gd, in which the transmittance T ranges from 59.1440% to 35.3026%, with standard deviation less than 2.2743%, mass attenuation coefficient 𝜇m from 0.3194 cm2/g to 0.4999 cm2/g, and half value layer-HVL value from 2.4530 mm to 1.1313 mm. Shielding efficiency of the Gd2O3/SEBS composites is basically improved in comparison with that of B4C/SEBS. The transmittance T, mass/linear attenuation coefficient 𝜇m and 𝜇, HVL and effective atomic number Zeff for the shielding of γ rays (39 keV, 59 keV and 122 keV) are measured and calculated with XCOM as well as MCX programs. Finally, plots of the three dimensional relationships between transmittance, doping amount and thickness are provided to the guidance for engineering shielding design. In summary, the Gd2O3/SEBS composite is proved to be an effective flexible neutron/low energy γ rays shielding material, which could be of potential applications in the field of nuclear technology and nuclear engineering.