• 제목/요약/키워드: Linear Switched Reluctance Motor

검색결과 51건 처리시간 0.036초

3상 6/8극 SRM (A Three-Phase 618 Structure SRM)

  • 이주현;이동희;;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.254-258
    • /
    • 2004
  • A three-phase 6/8 structure SRM (switched reluctance motor), the design and analysis of the motor are described. The range of the stator pole arc factor and the rotor pole arc factor of the motor are analyzed in the linear region. The optimum range of the stator pole arc factor and the turn-off angle of the main switches in the power converter are given with the 2-D finite element electro-magnetic field calculation of the motor and the nonlinear simulation. Test results of the prototype developed are discussed.

  • PDF

6/8극 SRM의 설계 및 특성해석에 관한 연구 (Study on Design and Characteristic Analysiy of 6/8 SRM)

  • 손익진;오석규;;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2002
  • A three-phase 6/8 structure Switched Reluctance Motor drive, the construction of the stator and the rotor. in the motor, the scheme of the rotor position detector and the main circuit of the power converter are described. The range of the stator pole arc factor and the rotor pole arc factor of the motor are analyzed in the linear region. The optimum range of the stator pole arc factor and the optimum range of the turn-off angle of the main switches in the power converter are given with the 2-D finite element electro-magnetic field calculation of the motor and the nonlinear simulation. Test jesuits of the developed prototype are discussed.

  • PDF

3상 6/8극 SRM의 설계 및 운전 특성 (Design and Drive of 3-phase 6/8 SRM)

  • ;이동희;안진우
    • 전력전자학회논문지
    • /
    • 제8권1호
    • /
    • pp.48-55
    • /
    • 2003
  • 본 논문은 3상 6/8극 스위치드 릴럭턴스 전동기의 설계 및 특성해석에 대해 다루었다. 고정자와 회전자 극호각의 설계 범위를 해석하고 최적값을 해석하였다. 최적의 값은 선형, 비선형으로 나누어 전통적인 설계접근 방식과 설계용 CAD를 이용하여 해석하였으며 실제 전동기를 제작하여 설계결과를 확인하였다. 이 전동기는 동일한 8/6 SRM에 비해 구동회로가 단순해지며, 권선의 전류밀도와 동손이 감소하여 효율이 상승하는 장점이 있다.

SRM의 고성능 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구 (A Study on the Linear Encoder for the high performance Oil Off Angle control of SRM)

  • 이동희;박성준;이명재;한성현;백운보;이희섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.190-198
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, witch are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

SRM의 토크리플 저감을 위한 개선된 논리적 비선형 토크분배기법 (Advanced Logical Non-Linear Torque Sharing Function for Torque Ripple Reduction of SRM)

  • 김태형;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.887_888
    • /
    • 2009
  • In this paper, an advanced torque control scheme of Switched Reluctance Motor (SRM) using modified non-linear logical TSF (Torque Sharing Function) based on the DITC (direct instantaneous torque control) with PWM(Pulse Width Modulation). In the proposed control scheme, a simple calculation of PWM duty ratio, switching rules from DITC and non-linear torque sharing function can reduce the torque ripple with fixed switching frequency. The proposed control scheme is verified by the computer simulations and experimental results.

  • PDF

직선형 스위치드 릴럭턴스 전동기의 동특성 시뮬레이션 (Dynamic Simulation of Linear Switched Reluctance Motor)

  • 장석명;박지훈;유대준;이성호;성호경;조한욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.71-73
    • /
    • 2007
  • This paper deals with dynamic characteristics of LSRM. Position choose mover of LSRM and inductance. When approved current in each phase by decided position, we made sure current and voltage according to turn-on, turn-off. In dynamic simulation of LSRM, through an experiment, we decided turn-on position of inductance profile. Also, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed current and voltage waveform.

  • PDF

LSRM의 토크리플 저감에 관한 연구 (A Study on The Torque Ripple Reduction of LSRM)

  • 성호경;조정민;이종민;김봉섭;유문환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.232-234
    • /
    • 2005
  • In this paper, A fuzzy logic based turn-off angle compensator for torque ripple reduction in a linear switched reluctance motor is proposed. The turn-off angle, as a complex function of motor speed and current, is automatically changed for a wide speed range to reduce torque ripple. Simulation results are presented that show ripple reduction when the turn-off angle compensator is used.

  • PDF

유압펌프시스템의 직접 순시 토오크 제어 (Direct Instantaneous Torque Control of Hydraulic Oil Pump System)

  • ;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.150-151
    • /
    • 2007
  • In hydraulic oil pump system, pressure has a linear relationship with output torque of motor. Torque control of pump drive can easily output stable pressure, and it can retain required pressure at minimum speed to save power consumption. Switched reluctance motor(SRM) has many advantages such as low cost and low inertia. It can generate high torque at low speed. But inherent high torque ripple of SRM influences performance of pressure control in hydraulic oil system. This paper presents direct instantaneous torque control(DITC) of hydraulic oil pump system. DITC method can reduce inherent torque ripple of SRM, and output smoothing torque to load. So the proposed hydraulic oil pump system can support smooth pressure and fast dynamic power supply to the hydraulic pump system. At last the proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

LSRM의 Turn-off보상에 의한 퍼지로직 토크리플저감에 관한 연구 (A Study on Fuzzy Logic Torque Ripple Reduction by Turn-off Angle Compensation of LSRM)

  • 성호경;조정민;이종민;유문환;김동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1616-1618
    • /
    • 2005
  • In this paper, A fuzzy logic based turn-off angle compensator for torque ripple reduction in a linear switched reluctance motor is proposed. The turn-off angle, as a complex function of motor speed and current, is automatically changed for a wide speed range to reduce torque ripple. Simulation results are presented that show ripple reduction when the him-off angle compensator is used.

  • PDF

퍼지제어기를 이용한 대전류 SRM의 토크리플제어 (Torque ripple control of High Current SRM using Fuzzy Controller)

  • 오동준;허욱렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.373-375
    • /
    • 2004
  • The SRM is more robust and lower cost than other type motors. The inverter for SRM cannot have shoot through fault, since a phase winding of SRM is independent of other phase windings. The SRM has high starting torque and high power density. But it has torque ripples due to nonlinear magnetic characteristics. Therefore, SRM has highly non-linear torque producing characteristics. Because fuzzy logic is a flexible and general-purposed method for implementing non-linear dynamic functions, it is effective for the control of high current SRM. We design the fuzzy controller and demonstrate the fuzzy control system by MATLAB.

  • PDF