• Title/Summary/Keyword: Linear Static Procedure

Search Result 65, Processing Time 0.024 seconds

Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs

  • Celep, Zekai;Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.451-463
    • /
    • 2022
  • The present study deals with forced vibrations of an elastic circular plate supported along its circular edge by unilateral elastic springs. The plate is assumed to be subjected to a uniformly distributed and a concentrated load. Under the combination of these loads, equations of motion are explicitly derived for static and dynamic response analyses by assuming a series of the displacement functions of time and other unknown parameters which are to be determined by employing Lagrangian functional. The approximate solution is sought by applying the Lagrange equations of motions by using the potential energy of the external forces that includes the contributions of the edge forces and the external moments, i.e., those of the effects of the boundary condition to the analysis. For the numerical treatment of the problem in the time domain, the linear acceleration procedure is adopted. The tensionless character of the support is taken into account by using an iterative process and, the coordinate functions for the displacement field are selected to partially fulfill the boundary conditions so that an acceptable approximation can be achieved faster. Numerical results are presented in the figures focusing on the nonlinearity of the problem due to the plate lift-off from the unilateral springs at the edge support.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

Interstory-interbuilding actuation schemes for seismic protection of adjacent identical buildings

  • Palacios-Quinonero, Francisco;Rubio-Massegu, Josep;Rossell, Josep M.;Rodellar, Jose
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.67-81
    • /
    • 2019
  • Rows of closely adjacent buildings with similar dynamic characteristics are common building arrangements in residential areas. In this paper, we present a vibration control strategy for the seismic protection of this kind of multibuilding systems. The proposed approach uses an advanced Linear Matrix Inequality (LMI) computational procedure to carry out the integrated design of distributed multiactuation schemes that combine interbuilding linking devices with interstory actuators implemented at different levels of the buildings. The controller designs are formulated as static output-feedback H-infinity control problems that include the interstory drifts, interbuilding approachings and control efforts as controlled-output variables. The advantages of the LMI computational procedure are also exploited to design a fully-decentralized velocity-feedback controller, which can define a passive control system with high-performance characteristics. The main ideas are presented by means of a system of three adjacent five-story identical buildings, and a proper set of numerical simulations are conducted to demonstrate the behavior of the different control configurations. The obtained results indicate that interstory-interbuilding multiactuation schemes can be used to design effective vibration control systems for adjacent buildings with similar dynamic characteristics. Specifically, this kind of control systems is able to mitigate the vibrational response of the individual buildings while maintaining reduced levels of pounding risk.

Seismic design of chevron braces cupled with MRF fail safe systems

  • Longo, Alessandra;Montuori, Rosario;Piluso, Vincenzo
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this paper, the Theory of Plastic Mechanism Control (TPMC) is applied to the seismic design of dual systems composed by moment-resisting frames and Chevron braced frames. The application of TPMC is aimed at the design of dual systems able to guarantee, under seismic horizontal forces, the development of a collapse mechanism of global type. This design goal is of primary importance in seismic design of structures, because partial failure modes and soft-storey mechanisms have to be absolutely prevented due to the worsening of the energy dissipation capacity of structures and the resulting increase of the probability of failure during severe ground motions. With reference to the examined structural typology, diagonal and beam sections are assumed to be known quantities, because they are, respectively, designed to withstand the whole seismic actions and to withstand vertical loads and the net downward force resulting from the unbalanced axial forces acting in the diagonals. Conversely column sections are designed to assure the yielding of all the beam ends of moment-frames and the yielding and the buckling of tensile and compressed diagonals of the V-Braced part, respectively. In this work, a detailed designed example dealing with the application of TPMC to moment frame-chevron brace dual systems is provided with reference to an eight storey scheme and the design procedure is validated by means of non-linear static analyses aimed to check the actual pattern of yielding. The results of push-over analyses are compared with those obtained for the dual system designed according to Eurocode 8 provisions.

Numerical characterizations of a piezoelectric micromotor using topology optimization design

  • Olyaie, M. Sadeghbeigi;Razfar, M.R.
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.

An Application of Screw Motions for Mechanical Assemblies (기계부품들의 조립 및 해체과정 설계를 위한 스크류이론의 응용)

  • 김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • CAD systems offer a variety of techniques for designing and rendering models of static 3D objects and even of mechanisms, but relatively few tools exist for interactively specifying arbitrary movements of rigid bodies through space. Such tools are essential, not only for artistic animation, but also, for planning and demonstrating assembly and disassembly procedure of manufactured products. A rigid body motion is a continuous mapping from the time domain to a set of positions. To relieve the designers from the burden of specifying this mapping in abstract mathematical terms, combinations of simple rigid motion primitives, such as linear translations or constant axis rotations, are often used. These simple motions are planar and thus ill-suited for approximating arbitrary motions in 3D-space. Instead, we propose the screw motion primitive, a special combination of linear translations and constant axis rotations, which has a simple geometric representation that can be automatically and unambiguously computed from the starting and ending positions of the moving body. Although, any two positions may be interpolated by an infinity of motions, we chose the screw motion for its relative generality and its computational advantages. The paper covers original algorithms for computing the screw motions from interpolated positions and envelopes of swept regions to predict collisions.

  • PDF

Optimal design of hybrid laminated composite plates (혼합 적층 복합 재료판의 최적설계)

  • 이영신;이열화;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1391-1407
    • /
    • 1990
  • In this paper, optimization procedures are presented considering the static and dynamic constraints for laminated composite plate and hybrid laminated composite plate subject to concentrated load on center of the plates. Design variables for this problem are ply angle or ply thickness. Deflection, natural frequency and specific damping capacity are considered as constraints. Using a recursive linear programming method, the nonlinear optimization problems are solved. By introducing the design scaling factor, the number of iterations is reduced significantly. Composite plates could be designed optimally combined with FEM analysis under various conditions. In the optimization procedure, verification for both analysis and design of the laminated composite plates are compared with the results of the others. Various design results are presented for the laminated composite plates and hybrid laminated composite plates.

H infinity controller design for induction motor with low speed (유도전동기의 저속운전을 위한 H infinity 제어기 설계)

  • Ban, Gi-Jong;Yoon, Kwang-Ho;Choi, Sung-Dai;Park, Jin-Soo;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.696-698
    • /
    • 2004
  • In this paper we design $H_{\infty}$ infinity controller for Induction motor with low speed operation. $H_{\infty}$ controller is applied in order to design a state feedback static controller for field oriented control of an induction motor. $H_{\infty}$ controller are linear plant can be set up using the same assumptions that are at the basis of field oriented control. Thus, $H_{\infty}$ control theory can be successfully used to set up a state feedback controller for field oriented control of an induction motor. The performances of the $H_{\infty}$ controller is numerically analysed and experimentally verified to prove the validity of the design procedure. In this paper show that performances with high robustness to variations of system parameter.

  • PDF

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae;Kim, Youngkwon;Lee, Min Ki;Park, Gunn-Tae;Kim, Wookang
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.47-50
    • /
    • 2016
  • Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.