Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.3.47

Low Temperature Test of HWR Cryomodule  

Kim, Heetae (Rare Isotope Science Project, Institute for Basic Science)
Kim, Youngkwon (Rare Isotope Science Project, Institute for Basic Science)
Lee, Min Ki (Rare Isotope Science Project, Institute for Basic Science)
Park, Gunn-Tae (Rare Isotope Science Project, Institute for Basic Science)
Kim, Wookang (Rare Isotope Science Project, Institute for Basic Science)
Publication Information
Applied Science and Convergence Technology / v.25, no.3, 2016 , pp. 47-50 More about this Journal
Abstract
Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.
Keywords
Cryomodule; Linear accelerator; Low temperature test; Effective temperature; Vacuum pump;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sun Kee Kim et al., Baseline Design Summary, http://risp.ibs.re.kr/orginfo/info_blds.do.
2 S. J. Yu, S. J. Youn, and H. Kim, Physica B, 405, 638 (2010).   DOI
3 H. Kim, S. C. Lim, and Y. H. Lee, Physics Letters A, 375, 2661 (2011).   DOI
4 H. Kim, S. J. Youn, and S. J. Yu, Journal of the Korean Physical Society, 56, 554 (2010).   DOI
5 H. Kim, W. K. Kim, G.T. Park, I. Shin, S. Choi, and D.O. Jeon, 67,600 (2014).
6 H. Kim, M.S. Han, D. Perello, and M. Yun, Infrared Physics & Technology, 60, 7(2013).   DOI
7 H. Kim, C.S. Park, and M.S. Han, Optics Communications 325, 68 (2014).   DOI
8 H. Kim, W. K. Kim, G. T. Park, C. S. Park, and H. D. Cho, Infrared Physics & Technology, 67, 49 (2014).   DOI
9 H. Kim, Y. S. Chang, W. K. Kim, Y. W. Jo, and H. J. Kim, Applied Science and Convergence Technology, 24, 77 (2015).   DOI
10 W. Steckelmacher and M. W. Lucas, J. Phys.D:Appl. Phys., 16, 1453 (1983).   DOI
11 L. Fustoss and G Toth, Vacuum, 40, 43 (1990).   DOI
12 S. Choi, G.T. Park and H. Kim, Applied Science and Convergence Technology, 24, 132 (2015).   DOI
13 H. Kim, K. Seo, B. Tabbert, and G. A. Williams, Europhysics Letters, 58, 395 (2002).   DOI
14 H. Kim, P.A. Lemieux, D. J. Durian, and G. A. Williams, Phys. Rev. E 69, 0614081 (2004).