• Title/Summary/Keyword: Linear Stability Theory

Search Result 279, Processing Time 0.023 seconds

Calculation of Combustion Stability Limits Using Linear Stability Analysis in Liquid Rocket Engines (액체 로켓엔진에서 선형 연소 불안정 해석을 이용한 연소 안정한계 곡선 계산)

  • Sohn, Chae-Hoon;Moon, Yoon-Wan;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.93-101
    • /
    • 2004
  • A method to calculate stability limits is investigated to predict the characteristics of high-frequency combustion instability in liquid-propellant rocket engine. It is based on the theory of linear stability analysis proposed in previous works and useful to predict combustion stability at the beginning stage of engine development. The system of equations governing reactive flow in combustor has the simplified and linearized forms. The overall equation expressing stability limits is adopted. The procedures to evaluate quantitatively each term included in the equation are proposed. The thermo-chemical properties and flow variables required in the evaluation can be obtained from calculation of thermodynamic equilibrium, CFD results, and experimental test data. Based on the existent data, stability limits are calculated with actual rocket engine (KSR-III rocket engine). The present calculations show the reasonable stability limits in a quantitative manner and the stability characteristics of the engine are discussed. The prediction from linear stability analysis could be serve as the first approximation to the true prediction.

IDENTIFICATION OF SINGLE VARIABLE CONTINUITY LINEAR SYSTEM WITH STABILITY CONSTRAINTS FROM SAMPLES OF INPUT-OUTPUT DATA

  • Huang, Zhao-Qing;Ao, Jian-Feng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1883-1887
    • /
    • 1991
  • Identification theory for linear discrete system has been presented by a great many reference, but research works for identification of continuous-time system are less than preceding identification. In fact, a great man), systems for engineering are continuous-time systems, hence, research for identification of continuous-time system has important meaning. This paper offers the following results: 1. Corresponding relations for the parameters of continuous-time model and discrete model may be shown, when single input-output system has general characteristic roots. 2. To do identification of single variable continuity linear system with stability constraints from samples of input-output data, it is necessary to use optimization with stability constraints. 3. Main results of this paper may be explained by a simple example.

  • PDF

A Study on the Critical Speed of Railway Vehicles (철도차량의 임계속도에 관한 연구)

  • Jeong, U-Jin;Kim, Seong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1991-1999
    • /
    • 2000
  • This research has been performed to reveal the hysteresis phenomena of the hunting motion in a railway passenger car having a bolster. Since linear analysis can not explain them, bifurcation analysis is used to predict its outbreak velocities in this paper. However bifurcation analysis is attended with huge computing time, thus this research proposes more effective numerical algorithm to reduce it than previous researches. Stability of periodic solution is obtained by adapting of Floquet theory while stability of equilibrium solutions is obtained by eigen-value analysis. As a result, linear and nonlinear critical speed are acquired. Full scale roller rig test is carried out for the validation of the numerical result. Finally, it is certified that there are many similarities between numerical and test results.

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir;Abdelmadjid, Cheikh
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.369-380
    • /
    • 2018
  • In this research work, nonlinear thermal buckling behavior of functionally graded (FG) plates is explored based a new higher-order shear deformation theory (HSDT). The present model has just four unknowns, by using a new supposition of the displacement field which enforces undetermined integral variables. A shear correction factor is, thus, not necessary. A power law distribution is employed to express the disparity of volume fraction of material distributions. Three kinds of thermal loading, namely, uniform, linear, and nonlinear and temperature rises over z-axis direction are examined. The non-linear governing equations are resolved for plates subjected to simply supported boundary conditions at the edges. The results are approved with those existing in the literature. Impacts of various parameters such as aspect and thickness ratios, gradient index, type of thermal load rising, on the non-dimensional thermal buckling load are all examined.

Design of Lyapunov Theory based State Feedback Controller for Time-Delay Systems (시간지연 시스템을 위한 리아푸노브 이론 기반 상태 피드백 제어기 설계)

  • Cho, Hyun Cheol;Shin, Chan Bai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.95-100
    • /
    • 2013
  • This paper presents a new state feedback control approach for communication networks based control systems in which control input and output observation time-delay natures are generally occurred in practice. We first establish a generic state feedback control framework based on well-known linear system theory. A maximum time-delay value which allows critical stability of whole control system are defined to make a positive definite Lyapunov function which is mathematically composed of controlled system states. We analytically derive its control parameters by using a steepest descent optimization method in order to guarantee a stability condition through Lyapunov theory. Computer simulation is numerically carried out for demonstrating reliability of the proposed NCS algorithm and a comparative study is accomplished to prove its superiority for which the traditional control approach for NCS is made use of under same simulation scenarios.

A Study on Buoyancy Effects in Double-Diffusive Convecting System(II) - Theoretical Study - (이중확산 대류계에서의 부력효과에 관한 연구(II) - 이론적 연구 -)

  • Hong, Nam-Ho;Kim, Min-Chan;Hyun, Myung-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.129-137
    • /
    • 1999
  • The time of the onset of double-diffusive convection in time-dependent, nonlinear concentration fields is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform temperature gradient experiences a sudden concentration change from below, but its stable thermal stratification affects concentration effects in such way to invoke convective motion. The related stability analysis, including Soret effect, is conducted on the basis of the propagation theory. Under the linear stability theory the concentration penetration depth is used as a length scaling factor, and the similarity transform for the linearized perturbation equations. The newlly obtained stability equations are solved numerically. The resulting critical time to mark the onset of regular cells are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal gradient promote double-diffusive convective motion.

  • PDF

A NEW APPROACH FOR ASYMPTOTIC STABILITY A SYSTEM OF THE NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

  • Effati, Sohrab;Nazemi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.231-244
    • /
    • 2007
  • In this paper, we use measure theory for considering asymptotically stable of an autonomous system [1] of first order nonlinear ordinary differential equations(ODE's). First, we define a nonlinear infinite-horizon optimal control problem related to the ODE. Then, by a suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal control problem. Then, the problem is modified into one consisting of the minimization of a linear functional over a set of positive Radon measures. The optimal measure is approximated by a finite combination of atomic measures and the problem converted to a finite-dimensional linear programming problem. The solution to this linear programming problem is used to find a piecewise-constant control, and by using the approximated control signals, we obtain the approximate trajectories and the error functional related to it. Finally the approximated trajectories and error functional is used to for considering asymptotically stable of the original problem.

Delay-dependent Stability Criteria for Uncertain Stochastic Neural Networks with Interval Time-varying Delays (구간 시변 지연이 존재하는 불확실 확률적 뉴럴 네트웍의 지연의존 안전성 판별법)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2066-2073
    • /
    • 2008
  • In this paper, the problem of global asymptotic stability of uncertain stochastic neural networks with delay is considered. The delay is assumed to be time-varying and belong to a given interval. Based on the Lyapunov stability theory, new delay-dependent stability criteria for the system is derived in terms of LMI(linear matrix inequality). Three numerical examples are given to show the effectiveness of proposed method.

Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.78-82
    • /
    • 2002
  • In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix Inequalities theory following a transformation of the closed loop systems into Lur'e systems.

Robust Fuzzy Feedback Linearization Control Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • In this paper, well-known Takagi-Sugeno fuzzy model is used as the nonlinear plant model and uncertainty is assumed to be included in the model structure with known bounds. Based on the fuzzy models, a numerical robust stability analysis for the fuzzy feedback linearization regulator is presented using Linear Matrix Inequalities (LMI) Theory. For these structured uncertainty, the closed system can be cast into Lur'e system by simple transformation. From the LMI stability condition for Lur'e system, we can derive the robust stability condition for the fuzzy feedback linearization regulator based on Takagi-Sugeno fuzzy model. The effectiveness of the proposed analysis is illustrated by a simple example.