• 제목/요약/키워드: Linear Stability

검색결과 2,079건 처리시간 0.026초

d-ISOMETRIC LINEAR MAPPINGS IN LINEAR d-NORMED BANACH MODULES

  • Park, Choon-Kil;Rassias, Themistocles M.
    • 대한수학회지
    • /
    • 제45권1호
    • /
    • pp.249-271
    • /
    • 2008
  • We prove the Hyers-Ulam stability of linear d-isometries in linear d-normed Banach modules over a unital $C^*-algebra$ and of linear isometries in Banach modules over a unital $C^*-algebra$. The main purpose of this paper is to investigate d-isometric $C^*-algebra$ isomor-phisms between linear d-normed $C^*-algebras$ and isometric $C^*-algebra$ isomorphisms between $C^*-algebras$, and d-isometric Poisson $C^*-algebra$ isomorphisms between linear d-normed Poisson $C^*-algebras$ and isometric Poisson $C^*-algebra$ isomorphisms between Poisson $C^*-algebras$. We moreover prove the Hyers-Ulam stability of their d-isometric homomorphisms and of their isometric homomorphisms.

LINEAR *-DERIVATIONS ON C*-ALGEBRAS

  • Park, Choonkil;Lee, Jung Rye;Lee, Sung Jin
    • 충청수학회지
    • /
    • 제23권1호
    • /
    • pp.49-57
    • /
    • 2010
  • It is shown that for a derivation $$f(x_1{\cdots}x_{j-1}x_jx_{j+1}{\cdots}x_k)=\sum_{j=1}^{k}x_{1}{\cdots}x_{j-1}x_{j+1}{\cdots}x_kf(x_j)$$ on a unital $C^*$-algebra $\mathcal{B}$, there exists a unique $\mathbb{C}$-linear *-derivation $D:{\mathcal{B}}{\rightarrow}{\mathcal{B}}$ near the derivation, by using the Hyers-Ulam-Rassias stability of functional equations. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

일반화된 고유치 문제를 이용한 시변 섭동의 안정 범위 (A Stability Region of Time-varying Perturbations by Using Generalized Eigenvalue Problem)

  • 이달호;한형석
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.901-906
    • /
    • 2005
  • The stability robustness problem of continuous linear systems with nominal and delayed time-varying perturbations is considered. In the previous results, the entire bound was derived only for the overall perturbations without separation of the perturbations. In this paper, the sufficient condition for stability of the system with two perturbations, which are nominal and delayed, is expressed as linear matrix inequalities(LMIs). The corresponding stability bounds fer those two perturbations are determined by LMI(Linear Matrix Inequality)-based generalized eigenvalue problem. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed.

이산시스템에서 시간지연을 갖는 시변 상태 지연 섭동의 안정 범위에 관한 연구 (Stability Bounds of Delayed Time-varying Perturbations of Discrete Systems)

  • 이달호;한형석
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.147-153
    • /
    • 2007
  • The stability robustness problem of linear discrete-time systems with delayed time-varying perturbations is considered. Compared with continuous time system, little effort has been made for the discrete time system in this area. In the previous results, the bounds were derived for the case of non-delayed perturbations. There are few results for delayed perturbation. Although the results are for the delayed perturbation, they considered only the time-invariant perturbations. In this paper, the sufficient conditions for stability can be expressed as linear matrix inequalities(LMIs). The corresponding stability bounds are determined by LMI(Linear Matrix Inequality)-based algorithms. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed results.

시변시간지연을 갖는 이산시간 선형시스템의 점근안정도 (Asymptotic Stability of Discrete-Time Linear Systems with Time Varying Delays)

  • 송성호;김점근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.641-643
    • /
    • 1998
  • This paper deals with the stability of discrete time linear systems with time - varying delays in state. In this paper, the magnitude of time - varying delays is assumed to be upper-bounded. The stability of discrete time linear systems with time - varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

3-로브 베어링으로 지지된 중형 고속 터보차저 로터의 선형 및 비선형 동적 안정성 특성 규명 (Identification of Linear and Nonlinear Dynamic Stability Characteristics of a Medium-size High-speed Turbocharger Rotor Supported by 3-lobe Bearings)

  • 이안성;김병옥
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.562-569
    • /
    • 2011
  • In this study linear and nonlinear dynamic stability characteristics of a medium-size high-speed turbocharger, whose rotor is supported by two 3-lobe journal bearings, are analyzed to evaluate and identify the effects of its bearing design variables. The rotor has the rated speed of 40,500 rpm and maximum continuous speed of 45,000 rpm. At first, utilizing the linear stability analysis method, bearing designs of yielding stable or unstable LogDecs as small as possible are searched by manipulating with machined bearing clearances and preloads. As next, utilizing the nonlinear analysis method, limit cycles of the rotor responses at the rated and maximum continuous speeds are simulated to check their acceptances. Results have shown that for the turbocharger rotor-bearing system considered, the 3-lobe journal bearing design with a smaller machined clearance and a larger preload are preferred for the stable rotor responses. More importantly, since there exists a good correlation between the linear and nonlinear stability analysis results, it is concluded that firstly the linear stability analysis method may be applied to screen quickly the ranges of bearing designs for stable or least unstable solutions and then, lastly the nonlinear stability analysis method may be deployed to check an absolute motion stability in terms of the limit cycle.

Effects of load height application and pre-buckling deflections on lateral buckling of thin-walled beams

  • Mohri, F.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • 제6권5호
    • /
    • pp.401-415
    • /
    • 2006
  • Based on a non-linear model taking into account flexural-torsional couplings, analytical solutions are derived for lateral buckling of simply supported I beams under some representative load cases. A closed form is established for lateral buckling moments. It accounts for bending distribution, load height application and pre-buckling deflections. Coefficients $C_1$ and $C_2$ affected to these parameters are then derived. Regard to well known linear stability solutions, these coefficients are not constant but depend on another coefficient $k_1$ that represents the pre-buckling deflection effects. In numerical simulations, shell elements are used in mesh process. The buckling loads are achieved from solutions of eigenvalue problem and by bifurcations observed on non linear equilibrium paths. It is proved that both the buckling loads derived from linear stability and eigenvalue problem lead to poor results, especially for I sections with large flanges for which the behaviour is predominated by pre-buckling deflection and the coefficient $k_1$ is large. The proposed solutions are in good agreement with numerical bifurcations observed on non linear equilibrium paths.

Stability Analysis of Linear Uncertain Differential Equations

  • Chen, Xiaowei;Gao, Jinwu
    • Industrial Engineering and Management Systems
    • /
    • 제12권1호
    • /
    • pp.2-8
    • /
    • 2013
  • Uncertainty theory is a branch of mathematics based on normolity, duality, subadditivity and product axioms. Uncertain process is a sequence of uncertain variables indexed by time. Canonical Liu process is an uncertain process with stationary and independent increments. And the increments follow normal uncertainty distributions. Uncertain differential equation is a type of differential equation driven by the canonical Liu process. Stability analysis on uncertain differential equation is to investigate the qualitative properties, which is significant both in theory and application for uncertain differential equations. This paper aims to study stability properties of linear uncertain differential equations. First, the stability concepts are introduced. And then, several sufficient and necessary conditions of stability for linear uncertain differential equations are proposed. Besides, some examples are discussed.

2차원 벽면제트의 선형안정성해석 (Linear Stability of Plane Wall Jet)

  • 차정훈;박승오;김문언
    • 한국항공우주학회지
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2006
  • 포물형안정방정식을 이용한 2차원 벽면제트의 선형안정성해석을 수행하였다. 벽면제트유동은 노즐의 출구근방을 제외하고 경계층근사가 매우 잘 성립하며, 국소상사성의 도입으로 기본유동의 유동방향속도성분은 출구에서의 레이놀즈수에 무관하게 된다. PSE를 사용해 얻은 벽면제트의 안정성특성은 이전의 실험결과들과 좋은 일치를 보임을 알 수 있었다.

액체 로켓엔진에서 선형 연소 불안정 해석을 이용한 연소 안정한계 곡선 계산 (Calculation of Combustion Stability Limits Using Linear Stability Analysis in Liquid Rocket Engines)

  • 손채훈;문윤완;허환일
    • 한국항공우주학회지
    • /
    • 제32권10호
    • /
    • pp.93-101
    • /
    • 2004
  • 액체 로켓엔진에서 발생하는 고주파 연소 불안정성을 예측하기 위해 선형 안정한계를 계산하는 방법을 연구하였다. 기존의 선형이론에 근거하여 유도된 선형 안정한계를 나타내는 안정한계 식을 채택하였으며, 그 식을 구성하는 각각의 항을 정량적으로 평가하는 방안들이 제시되었다. 안정한계 계산에 필요한 열-화학 물성치와 유동 변수를 열역학적 평형계산과 CFD 해석 및 실험 결과로부터 평가하는 구체적 절차들을 상세히 제시하였다. 실제 로켓엔진으로서 시험 데이터가 확보되어 있는 KSR-III 로켓엔진에 대해서 제시한 방법을 적용하여 안정한계 곡선을 구하였다. 계산결과는, 해당 엔진에 대해 정량적으로 타당한 안정한계 곡선을 보여주었다. 이를 토대로 해당 엔진의 안정성 특성을 분석하였다. 본 연구에서 제시된 선형 안정한계 계산 방법은 진정한 예측의 1차적 근사로서 활용할 만한 가치가 있으며, 엔진 개발 초기에 근사적으로 안정성 경향을 분석하기에 유용할 것이다.