• Title/Summary/Keyword: Linear Spring

Search Result 499, Processing Time 0.026 seconds

Evolution of Carbon and Nitrogen Concentrations in the Leaves as Related to Dry Matter and Crude Protein Accumulation of Forage Rape(Brassica napus ssp. oleifera) (사초용유채(Brassica napus ssp. oleifera)의 생육기간중 건물 및 조단백질 축적과 엽내 Carbon 및 Nitrogen 함량의 변화)

  • Jeong, U Jin;Kim, Byeong Ho;Kim, Tae Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 1993
  • The purpose of this study is to determine the evolution of carbon and nitrogen concentrations in relation to dry matter and crude protein accumulation in the leaves of forage rape(Brassica napus Subsp. oleifera, CV. Swiss) during the growth period. Field-grown plants were sampled at intervals throughout fall, winter, early and late spring. During over-wintering period(from Nov. 7 1991 to Feb. 4 1992), the carbon concentration in the leaves increased from 382 mg to 435 mg g DM$^{-1}$ , while the concentrations of nitrogen and crude protein significantly decreased. There was little accumulation of fresh and dry matter in the leaves. On early spring growth from 4 Feb. to 30 Mar. marked carbon loss 37 mg. day$^{-1}$ and slight nitrogen accumulation occurred with the increase of fresh weight in the leaves. From spring growth to bolting stage(from 31 Mar. to 16 Apr.) the greatest accumulation of fresh and dry matter was observed and carbon and crude protein concentrations increased with a linear manner. After bolting stage the concentrations of carbon, nitrogen, hydrogen and crude protein in the leaves significantly decreased until late blooming stage, and the decreasing rate was prominent in nitrogen (45.7%) and crude protein(46%). From the results above it is recommended that fertilizer will be applied before early spring growth, and that optimal utilization period is a bolting stage. For the serious modification of the internal C/N balance during the overwintering period.

  • PDF

The Research of the Hybrid Power Generation using Ocean Wave (파력을 이용한 하이브리드 발전에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.861-866
    • /
    • 2011
  • This paper described the hybrid power generation using ocean wave that consists of linear power generation system and vibrational power generation system. The linear power generation system is made up of the winding coil, the permanent magnet and it is performed stable generation regardless of the wave frequency using directly the ocean wave velocity. And the vibration power generation system consists of the winding coil, the permanent magnet and spring. When the vibration system natural frequency in the vibrational power generation system is tuned to the ocean wave frequency, the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion, then we can obtain more the electric power. Therefore, in this paper, the proposed hybrid power generation using ocean wave have merits that obtaining the more electric energy in resonance frequency and carrying out stable generation even over the range of resonance frequency.

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method (경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.

Seismic Response Analysis of Bridges Using Equivalent Linear Soil/Foundation Spring Model (등가선형 지반스프링모델을 사용한 교량의 지진응답해석)

  • 박형기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.372-380
    • /
    • 2000
  • Seismic forces for member design of bridges may be determined by modifying elastic member forces induced by design earthquakes using appropriate response modification factors according to national design code of bridges. Modeling of soil/foundation system is one of the critical parameter in the process of elastic seismic analysis of bridge system which greatly affects on the analysis results. In this paper, a simplified modelling procedure of soil/foundation system which gives practically reasonable results is presented and its applicability has been validated through example bridge. Based on the results, it has been shown that the procedure is acceptable in modelling soil/foundation system for practical seismic analysis of bridges.

  • PDF

The vessel collision load on bridge with fender system (방호공을 고려한 선박의 충돌하중)

  • 이계희;고재용;이성로
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, the impact load on bridge by vessel collision in consideration of fender system is evaluated by numerical method. The bow of object vessel(DWT5000) is standardized, and modeled by shell elements. The main body of objective vessel is modeled by beam elements that present mass distribution and stiffness of vessel. The buoyancy effect of vessel is considered as linear spring. The two types of fender systems, such as steel and rubber are analyzed in this study. In steel fender system, the steel plates that absorb collision energy by its collapse are modeled by shell element with stiffener. The steel is material modeled elastic-plastic material. In the rubber fender system, the rubber material is modeled hyper-elastic material and the main body of fender is modeled by solid elements. The global impact responses of vessel and fender system are evaluated by explicit dynamic scheme. The results show that the magnitude of vessel collision force are depended on the material behavior of fender system. Also the values of collision load are conservative compare to the those of design codes.

  • PDF

On the Description of Constrained Static Behavior of Continuous System

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Chung-Yeol
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • The static behavior of continuous system is described by the elastic curve method or is approximately analyzed by a finite element method to be modeled as a discrete system. If a continuous system is constrained by linear constraints which restrict its static behavior, its behavior can be approximately described by the finite element method. It is not easy to describe the constrained behavior by continuous coordinate system. Starting from the generalized inverse method provided by Eun, Lee and Chung, this study is to expand the equation to the continuous systems, to perform the structural analysis of the beam under a uniform loading with interior spring supports, and to investigate the validity of the proposed method through applications.

A Sudy on the Undamped Forced Vibration of Nonlinear Two-Degree-of-Freedom Systems (비선형 2자유도계의 비감쇠 강제진동 연구)

  • 박철희;박선재;윤영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 1988
  • The forced vibrations of nondissipative nonlinear two-degree-of-freedom system, subjected to periodic forcing functions, are investigated by use of the method of slowly changing phase and amplitude. The first order differential equations are derived for nonrationally solutions and the coupled nonlinear algebraic equations for stationary solutions. Through investigating the response curves of the system, which are obtained numerically by using Newton-Raphson method, it is found that the resonances can occur at more than the number of degree-of-freedom of the system depending on the relation between the nonlinear spring parameters, which has no counterpart in linear systems.

A Basic Study on Development of Residents Emotion Index in Apartment Community (아파트 커뮤니티에서의 거주자 감정지표 개발에 관한 기초 연구)

  • Park, Ji-Hye;Cho, Sung-Heui
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2011.04a
    • /
    • pp.247-250
    • /
    • 2011
  • The purpose of this study suggests the emotion of residents as indexes in Korean housing environment for providing a fundamental guideline for precise dwelling social science and indicating the view for understanding of residents in korean housing culture in korea. So this paper explores the role of residents emotion indexes in housing environment and community. For this study, survey and depth-interview methods were used for data collection. The subjects were 514 housewives living in apartments. The statistical methods for data analysis were frequency, mean, multiple linear regression and logistic regression analysis using the SPSS 18.0 program The major findings are as follows: 1)Pride of neighborhood, pride of apartment complex and sense of superiority were important factors for residental satisfaction. 2)Conspicuous image of neighbors and active contact with neighbors were import factors for their neighborship in the apartment complex. The results develop the housing environment evaluation indexes in community through the contextual understanding of space emotion society.

  • PDF

A Study on the Speed Control of Electro - hydraulic Servo System under Load Disturbance (부하외란이 가해지는 전기.유압서보계의 속도 제어에 관한 연구)

  • 하석홍;권기수;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 1993
  • The loads exerted on electro-hydraulic servo system are classified into inertial, viscous, and spring load. The additional load called disturbances is also exerted on system but is generally not modeled. To deal with these kinds of loads, it is necessary to maintain the continuous signal transfer, so we can construct compensator to satisfy control specifications using feedback signal such as displacement, velocity, acceleration and pressure known as state variables. In case of controlling the speed of hydraulic motor, we must keep up robust performance for the various loads and disturbances acted on the system. However, the load flow rate in the valve is characterized by nonlinearity so that traditional theory of linear control could not be expected to give the desired performance. In this paper, it is shown that speed controller of hydraulic motor gives a good command following and disturbance rejection performance by applying sliding mode theory as a way of robust control to the nonlinearity, variation of loads and disturbances.

  • PDF