• Title/Summary/Keyword: Linear Spectral

Search Result 579, Processing Time 0.024 seconds

A Study on Estimation of Water Depth Using Hyperspectral Satellite Imagery (초분광 위성영상을 이용한 수심산정에 관한 연구)

  • Yu, Yeong-Hwa;Kim, Youn-Soo;Lee, Sun-Gu
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.216-222
    • /
    • 2008
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult. This research used EO-l Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

Determination of Research Octane Number using NIR Spectral Data and Ridge Regression

  • Jeong, Ho Il;Lee, Hye Seon;Jeon, Ji Hyeok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • Ridge regression is compared with multiple linear regression (MLR) for determination of Research Octane Number (RON) when the baseline and signal-to-noise ratio are varied. MLR analysis of near-infrared (NIR) spectroscopic data usually encounters a collinearity problem, which adversely affects long-term prediction performance. The collinearity problem can be eliminated or greatly improved by using ridge regression, which is a biased estimation method. To evaluate the robustness of each calibration, the calibration models developed by both calibration methods were used to predict RONs of gasoline spectra in which the baseline and signal-to-noise ratio were varied. The prediction results of a ridge calibration model showed more stable prediction performance as compared to that of MLR, especially when the spectral baselines were varied. . In conclusion, ridge regression is shown to be a viable method for calibration of RON with the NIR data when only a few wavelengths are available such as hand-carry device using a few diodes.

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

REGULARITY OF 3D NAVIER-STOKES EQUATIONS WITH SPECTRAL DECOMPOSITION

  • Jeong, Hyosuk
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.583-592
    • /
    • 2016
  • In this paper, we consider the global existence of strong solutions to the incompressible Navier-Stokes equations on the cubic domain in $R^3$. While the global existence for arbitrary data remains as an important open problem, we here provide with some new observations on this matter. We in particular prove the global existence result when ${\Omega}$ is a cubic domain and initial and forcing functions are some linear combination of functions of at most two variables and the like by decomposing the spectral basis differently.

Modified Instrumental Variable Methods for ARMA Spectral Estimation (ARMA 스펙트럼 추정을 위한 변형기구 변수법에 관한 연구)

  • 양흥석;정찬수;남도현;김국헌
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.438-444
    • /
    • 1986
  • The signal can be modeled as a linear combination of its past values and present and past values of a hypothetical input to system whose output is given signal. Using this model spectral estimation problem can be reduced to estimate the ARMA parameters. This paper presents recursive modified instrumental variable algorithm which can estimate AR and MA parameters. For more accurate estimation, overdetermined modified IV algorithm is also derived. Computer simulations are presented to illustrate the above methods.

  • PDF

SOME INVARIANT SUBSPACES FOR SUBSCALAR OPERATORS

  • Yoo, Jong-Kwang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1129-1135
    • /
    • 2011
  • In this note, we prove that every subscalar operator with finite spectrum is algebraic. In particular, a quasi-nilpotent subscala operator is nilpotent. We also prove that every subscalar operator with property (${\delta}$) on a Banach space of dimension greater than 1 has a nontrivial invariant closed linear subspace.

CONTROLLABILITY FOR SEMILINEAR CONTROL SYSTEMS WITH ISOLATED SPECTRUM POINTS

  • JEONG JIN-MUN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.557-567
    • /
    • 2006
  • This paper proves the invariability of reachable sets for the linear control system with positive isolated spectrum points in case where the principal operator generates $C_0-semigroup$ and derives the approximate controllability for the semilinear control system by using spectral operators with respect to isolated spectrum points.

LOCAL SPECTRAL THEORY

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.261-269
    • /
    • 2020
  • For any Banach spaces X and Y, let L(X, Y) denote the set of all bounded linear operators from X to Y. Let A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA. In this paper, we prove that AC and BA share the local spectral properties such as a finite ascent, a finite descent, property (K), localizable spectrum and invariant subspace.

On Long-term Prediction Scheme in Ocean Engineering

  • Kwon, Sun-Hong;Kim, Dea-Woong
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2000
  • This paper proposes a long-term prediction of offshore structures in ocean waves. All short-term statistics is generated by the simulation for all the combinations of significant wave heights and spectral peak periods. The simulation has been tested first on linear system, whose analytic solution is known, to verify if the simulation works accurately. Then the scheme was applied to the nonlinear system. This paper demonstrated that the proposed scheme could be an efficient tool in estimating the response of offshore structures.

  • PDF

Fast Solution of Linear Systems by Wavelet Transform

  • Park, Chang-Je;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.282-287
    • /
    • 1996
  • We. develop in this study a wavelet transform method to apply to the flux reconstruction problem in reactor analysis. When we reconstruct pinwise heterogeneous flux by iterative methods, a difficulty arises due to the near singularity of the matrix as the mesh size becomes finer. Here we suggest a wavelet transform to tower the spectral radius of the near singular matrix and thus to converge by a standard iterative scheme. We find that the spectral radios becomes smatter than one after the wavelet transform is performed on sample problems.

  • PDF