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LOCAL SPECTRAL THEORY

JONG-KWANG YOO

Abstract. For any Banach spaces X and Y, let L(X,Y ) denote the set

of all bounded linear operators from X to Y. Let A ∈ L(X,Y ) and B,C ∈
L(Y,X) satisfying operator equation ABA = ACA. In this paper, we prove

that AC and BA share the local spectral properties such as a finite ascent,

a finite descent, property (K), localizable spectrum and invariant subspace.
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1. Introduction and preliminaries

For any Banach spaces X and Y, let L(X,Y ) denote the set of all bounded
linear operators from X to Y. For given A ∈ L(X), we use σ(A), σp(A), σap(A),
ρ(A) and r(A) to denote the spectrum, the point spectrum, the approximate
point spectrum, the resolvent set and the spectral radius of A, respectively.
Recall that the point spectrum of A ∈ L(X) is given by σp(A) := {λ ∈ C :
λI −A is not injective}. As usual, given A ∈ L(X), let ker(A) and A(X) stand
for the kernel and the range of an operator A ∈ L(X), respectively.

The single-valued extension property(SVEP for brevity) dates back to the
early days of local spectral theory and first appears in Dunford [7] and [8]. The
localized version of SVEP considered in this paper was introduced in Finch [10]
and has become an important tool in local spectral theory and Fredholm theory
for operators on Banach spaces, see [1] and [16].

Definition 1.1. ([10]) An operator A ∈ L(X) is said to have the single-valued
extension property at a point λ ∈ C (SVEP at λ for brevity) if, for every open
disc U ⊆ C centered at λ the only analytic function f : U → X satisfies the
equation

(µI −A)f(µ) = 0 for all µ ∈ U
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is the constant function f ≡ 0 on U. In addition, the operator A ∈ L(X) is said
to have the SVEP if A has the SVEP at every point λ ∈ C.

Evidently, an operator A has SVEP at a point λ precisely when λI − A has
SVEP at 0. Moreover, SVEP at a point is inherited by restrictions to closed
invariant subspaces. It is clear that A ∈ L(X) has the SVEP at every point
of the resolvent ρ(A) := C \ σ(A) and from the identity theorem for analytic
function it follows that A ∈ L(X) has the SVEP at every point of the boundary
∂σ(A) of the spectrum. Moreover, it is clear that A ∈ L(X) has the SVEP at
every isolated point of the spectrum.

For A ∈ L(X), the local resolvent set ρA(x) of A at the point x ∈ X is defined
as the set of all λ ∈ C for which there exist an open neighborhood U of λ and
analytic function f : U → X such that

(µI −A)f(µ) = x for all µ ∈ U.

The local spctrum σA(x) at x is the set defined by σA(x) := C\ρA(x). It is obvious
that the analytic solutions occurring in the defintion of the local resolvent set is
unique if and only if A has the SVEP.

For every subset F of C, the analytic spectral subspace of A associated with
F is the set

XA(F ) := {x ∈ X : σA(x) ⊆ F}.
Evidently, XA(F ) is a A−invariant linear subspace of X and that XA(F ) ⊆

XA(G) whenever F ⊆ G. Even for a closed subset F of C, the analytic spectral
subspace XA(F ) need not be closed. It follows from Proposition 1.2.16 of [16]
that for every closed F of subset of C, we have

(λI −A)XA(F ) = XA(F ) for all λ ∈ C \ F.

For every closed subset F of C, the glocal spectral subspace XA(F ) is defined as
the set of all x ∈ X for which there exists an anlytic function f : C \ F → X
that satisfies (λI − A)f(λ) = x for all λ ∈ C \ F. Note that XλI−A(C \ {0}) =
XA(C \ {λ}) for every λ ∈ C.

The following elementary lemma will be useful in the sequel.

Lemma 1.2. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfying operator equation
ABA = ACA. Then A(BA)n−1 = (AC)n−1A and (BA)nB = B(AC)n−1AB for
all n = 1, 2, · · · .

Lemma 1.3. Let T ∈ L(X), S ∈ L(Y ) and A ∈ L(X,Y ) be operators on Banach
spaces X and Y with AT = SA. Then σS(Ax) ⊆ σT (x) and AXT (F ) ⊆ YS(F )
for all subsets F of C.

Proof. We have to show that ρT (x) ⊆ ρS(Ax) for all x ∈ X. Suppose that
λ0 ∈ ρT (x). Then there exists an analytic function f : U → X defined on some
open neighborhood U of λ0 such that (µI − T )f(µ) = x for all µ ∈ U. Clearly,
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Af(µ) is analytic. Since AT = SA, it is easily seen that (µI − S)Af(µ) = Ax
for all µ ∈ U, so that λ0 ∈ ρS(Ax), as desired. �

Corollary 1.4. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfying operator equa-
tion ABA = ACA. Then we have the followings:
(a) σAC(Ax) ⊆ σBA(x) and σAB(Ax) ⊆ σCA(x) for all x ∈ X. Moreover, if A
is injective then σBA(x) = σCA(x) for every x ∈ X.
(b) AXBA(F ) ⊆ YAC(F ) and AXCA(F ) ⊆ YAB(F ) for all subsets F of C.

Proof. By Lemma 1.3, σAC(Ax) ⊆ σBA(x) and σAB(Ax) ⊆ σCA(x) for all x ∈
X. Since A is injective, by Proposition 3.1 of [5] we have σBA(x) = σAB(Ax)
and σCA(x) = σAC(Ax) for every x ∈ X. Thus for every x ∈ X

σBA(x) = σAB(Ax) ⊆ σCA(x) = σAC(Ax) ⊆ σBA(x)

and hence σBA(x) = σCA(x) for every x ∈ X. �

Corollary 1.5. ([5]) Let A ∈ L(X,Y ) and B ∈ L(Y,X). Then we have the
followings:
(a) σAB(Ax) ⊆ σBA(x) ⊆ σAB(Ax) ∪ {0} for all x ∈ X;
(b) σBA(By) ⊆ σAB(y) ⊆ σBA(By) ∪ {0} for all y ∈ Y.

For an operator A ∈ L(X), let S(A) := {λ ∈ C : A fails to have SVEP at λ}.
Obviously, S(A) is empty precisely when T has SVEP. It follows from the identity
theorem for analytic functions that S(A) is open, and therefore contained in the
interior of the spectrum σ(A). In general, SVEP is not preserved under quotients
and duality, see [1] and [16].

Proposition 1.6. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfying operator
equation ABA = ACA. Then S(AC) = S(BA).

Proof. If λ0 /∈ S(AC), then for every open subset Vλ0 centered at λ0 the only
analytic function f : Vλ0 → Y which satisfies the equation

(µI −AC)f(µ) = 0

is the function f ≡ 0. Let Uλ0
be open and analytic function g : Uλ0

→ X such
that

(µI −BA)g(µ) = 0 for all µ ∈ Uλ0
.

Then (µI − AC)Ag(µ) = A(µI − BA)g(µ) = 0 for all µ ∈ Uλ0 . It follows that
Ag(µ) = 0 for all µ ∈ Uλ0

, thus µg(µ) = 0 for all µ ∈ Uλ0
and g(µ) = 0 for every

µ ∈ Uλ0
µ 6= λ0, and from the continuity of g at λ0, we conclude that g(λ0) = 0.

Hence g ≡ 0 on Uλ0
and therefore BA has the SVEP at λ0. This implies that

λ0 /∈ S(BA). The converse implication is similar. �
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It is clear that if A ∈ L(X,Y ) and B ∈ L(Y,X) satisfying operator equation
ABA = ACA then AC has SVEP if and only if BA has SVEP.

Proposition 1.7. Let F ⊆ C be a closed and let G ⊆ C be a finite set with
F ∩ G = φ. Suppose that A ∈ L(X) has SVEP. If XA(F ∪ G) is closed, then
XA(F ) is closed.

Proof. Let G :=
⋃n
i=1{λi} and let Z := XA(F ∪G) and S := A|Z ∈ L(Z). Then

Z is closed and S has SVEP. It follows from Proposition 1.2.20 of [16] that

σ(S) ⊆ F ∪G

and ZS(F ) = ZS(F ∩ σ(S)) = ZS(σ(S)) = Z. Thus by Lemma 2.4 of [2], we
have

ZS(W ) = XA(W ) for every closed W ⊆ F ∪G.
Case (I). Suppose that λi /∈ σ(S) for all i = 1, 2, · · · , n. Then σ(S) ⊆ F and
ZS(F ) = Z and hence XA(F ) = ZS(F ) = Z is closed.

Case (II). Suppose that G ⊆ σ(S). Let F0 := σ(S)∩F. Then F0 is closed and
σ(S) = F0 ∪G. Thus λi /∈ F0 for all i = 1, 2, · · · , n. It follows from Proposition
3.3.3 of [16] that

Z = ZS(σ(S)) = ZS(F0)⊕ ZS({λ1})⊕ ZS({λ2})⊕ · · · ⊕ ZS({λn})

is closed. Thus ZS(F0) is closed and ZS(F0) = ZS(σ(S)∩F ) = ZS(F ) = XA(F ),
and hence XA(F ) is closed.

Case (III). Suppose that λ1 ∈ σ(S) and λi /∈ σ(S) for all i = 2, 3, · · · , n. Then
it is clear that σ(S) ⊆ F ∪ (

⋃n
i=2{λi}). Let F0 := σ(S) ∩ F. Then F0 is closed.

Also σ(S) = F0∪{λ1} and F0 and {λ1} are disjoint. It follows from Proposition
3.3.3 of [16] that Z = ZS(σ(S)) = ZS(F0)⊕ZS({λ1}) is closed. Thus ZS(F0) is
closed. Also, ZS(F0) = ZS(F ∩ σ(S)) = ZS(F ) = XA(F ), and hence XA(F ) is
closed. �

Proposition 1.8. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfy operator equa-
tion ABA = ACA. Then we have the followings;
(a) σp(AC) \ {0} = σp(AB) \ {0};
(b) if A is surjective, then σsur(AC) ⊆ σsur(BA) and σsur(AB) ⊆ σsur(CA).

Proof. (a) Let λ ∈ σp(AC) \ {0}. Then ACy = λy for some nonzero y ∈ Y. It is
clear that

λABy = (ABA)Cy = (ACA)Cy = AC(ACy) = λACy = λ2y.

Thus we have λ(AB−λI)y = (AB−λI)ACy = 0. Hence λ ∈ σp(AB)\{0}. The
converse implication is similar.

(b) Let λ /∈ σsur(BA). Because of A is surjective, we have

Y = A(X) = A(λI −BA)(X) = (λI −AC)(Y ).
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Thus λ /∈ σsur(AC) and hence σsur(AC) ⊆ σsur(BA). The converse implication
is similar. �

2. Main results

It is well known from Theorem 3.8 of [1] that SVEP is intimately related to
certain conditions from classical operator theory. Let p(A) denote the ascent
of an operator A ∈ L(X), i.e., p(A) is the smallest non-negative integer p for
which ker(Ap) = ker(Ap+1), if such an integer exists and otherwise p(A) = ∞.
Analogously, let q(A) denote the descent of an operator A ∈ L(X), i.e., q(A)
is the smallest non-negative integer q for which Aq(X) = Aq+1(X), if such an
integer exists and otherwise q(A) = ∞. It follows from Theorem 2.4 of [4] or
Theorem 3.8 of [1] that if p(λI −A) is finite then A has SVEP at λ, and dually,
for the adjoint operator A∗ ∈ L(X∗) if q(λI −A) is finite then A∗ has SVEP at
λ, see [1], [11], [16].

Proposition 2.1. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfy operator equa-
tion ABA = ACA. Then we have the followings;
(a) Suppose A is injective and AC has a finite ascent. Then BA has a finite
ascent;
(b) Suppose that A is surjective and BA has a finite descent. Then AC has a
finite descent.

Proof. (a) Suppose that AC has a finite ascent p. It is clear from Lemma 1.2
that A(BA)n+1 = (AC)n+1A for all n = 1, 2, · · · . If (BA)p+1x = 0 then
(AC)p+1Ax = A(BA)p+1x = 0 and Ax ∈ ker(AC)p+1 = ker(AC)p. Thus
A(BA)px = (AC)pAx = 0. Since A is injective, (BA)px = 0 and hence BA
has a finite ascent p.

(b) Suppose that BA has a finite descent q. Since A is surjective, Y = A(X).
It follows from Lemma 1.2 that (AC)q+1A(X) = A(BA)q+1(X) = A(BA)q(X).
Thus we have

(AC)q+1(Y ) = (AC)q+1A(X) = A(BA)q(X) = (AC)qA(X) = (AC)q(Y ).

Hence AC has a finite descent q. �

In [12] M. Mbekhta introduced two important subspaces of X.

Definition 2.2. ([12]) The quasi-nilpotent part of an operator A ∈ L(X) is the
set

H0(A) := {x ∈ X : lim
n→∞

‖Anx‖ 1
n = 0},

and the analytic core of A ∈ L(X) is the set K(A) of all x ∈ X such that there
exist a sequence (xn)n∈N ⊆ X and c > 0 for which x = x0, Axn+1 = xn and
‖xn‖ ≤ cn‖x‖ for every n = 0, 1, · · · .
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It is clear that both H0(A) and K(A) are A−hyperinvariant linear subspaces
of X and fail to be closed in general. Moreover, H0(A) = XA({0}), K(A) =
XA(C \ {0}), T (K(A)) = K(A) and if A is quasi-nilpotent then K(A) = {0}
and the identity K(A) = X holds precisely when A is surjective, see Theorem
1.18 and Theorem 2.22 of [1].

Proposition 2.3. Let A ∈ L(X,Y ) and B ∈ L(Y,X). Then we have
(a) H0(AB) is closed if and only if H0(BA) is closed;
(b) if A and B are injective, then K(AB) is closed if and only if K(BA) is
closed.

Proof. It is direct consequence of Corollary 3.3 and Corollary 3.7 of [22]. �

Definition 2.4. ([19]) An operator A ∈ L(X) is said to have the property (K)
at a point λ0 ∈ C if both H0(λ0I −A) and K(λ0I −A) are closed, and

X = H0(λ0I −A) +K(λ0I −A).

Moreover, A is said to have the property (K) if A has the property (K) at every
point λ ∈ C.

It is clear that if A has the property (K), then A has SVEP and H0(λI−A) =
XA({λ}) is closed for every λ ∈ C. Clearly, if A ∈ L(X) has the property (K)
at λ0, then H0(λ0I − A) ∩K(λ0I − A) = {0}. Obviously, if A ∈ L(X) has the
property (K) at λ0 then both A and A∗ have the SVEP at λ0. Also, it is well
known that A has the property (K) at every λ ∈ ρ(A) and if A ∈ L(X) is a Riesz
operator, then A has the property (K) at every point λ ∈ σ(A) \ {0}. Moreover,
A has the property (K) at the point λ0 if and only if λ0 ∈ σ(A) is an isolated
point of the spectrum σ(A), see [19] and [20].

The surjectivity spectrum σsur(A) of A ∈ L(X) is defined as the set of all
λ ∈ C such that the operator λI − A is not surjective. It is well known that
σsur(A) is a compact subset of C that contains the boundary of σ(A), and
X = XA(σsur(A)) = XA(σsur(A)). The approximate point spectrum σap(A) of
A ∈ L(X) is defined as the set of all λ ∈ C such that the operator λI −A is not
bounded below.

Theorem 2.5. Let A ∈ L(X) and let 0 ∈ σsur(A). If 0 is isolated in σsur(A)
then A has the property (K) at 0.

Proof. Suppose that 0 is an isolated in σsur(A). Then by Theorem 1 of [18],
H0(A) and K(A) are closed. It is clear that H0(A) +K(A) ⊆ X and

X (σsur(A) \ {0}) ⊆ XA(C \ {0}) = K(A).

It follows from Proposition 3.3.1 of [16] that

X = XA(σsur(A)) = XA({0}) + XA(σsur(A) \ {0}).
It follows that X = H0(A) +K(A). Hence A has the property (K) at 0. �
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It is well known that σap(A) is a compact subset of C and σap(A) = σsur(A
∗),

where A∗ denote the conjugate operator of A ∈ L(X).

Corollary 2.6. Let A ∈ L(X). Suppose that 0 ∈ σap(A) is isolated in σap(A).
Then A∗ has the property (K) at 0.

Corollary 2.7. Let A ∈ L(X) and let Z(x) be the set of all accumulation points
of σA(x). If 0 /∈

⋂
x∈X Z(x) then A has the property (K) at 0.

Corollary 2.8. Let A ∈ L(X). If σ(A) is a finite set, then A has the property
(K) at 0.

Theorem 2.9. Let A ∈ L(X,Y ) and B ∈ L(Y,X). Suppose that both A and
B are bijective. Then BA has the property (K) at 0 if and only if AB has the
property (K) at 0.

Proof. Suppose that BA has the property (K) at 0. Then both H0(BA) and
K(BA) are closed and X = H0(BA) +K(BA). Note that H0(BA) = XBA({0})
and K(BA) = XBA(C \ {0}). It follows from Proposition 2.3 that both H0(AB)
and K(AB) are closed. Because A is bijective, Y = A(X) = A(XBA({0}) ⊕
XBA(C \ {0})). If y ∈ Y, then y = Aa + Ab for some a ∈ XBA({0}) and
b ∈ XBA(C \ {0}). It follows from Corollary 1.5 that

σAB(Aa) ⊆ σBA(a) ⊆ {0} and σAB(Ab) ⊆ σBA(b) ⊆ C \ {0}.

Thus Aa ∈ XAB({0}) and Ab ∈ XAB(C \ {0}). We have

y ∈ XAB({0}) +XAB(C \ {0}).

This implies that Y = XAB({0})+XAB(C\{0}) = H0(AB)+K(AB). Hence AB
has the property (K) at 0. The reverse implication is obtaind by symmetry. �

Definition 2.10. Let A ∈ L(X) be a bounded linear operator on a complex
Banach space X. The localizable spectrum σloc(A) of an operator A ∈ L(X) is
defined as a set of all λ ∈ C for which XA(V ) 6= {0} for every open neighborhood
V of λ.

Obviously, σloc(A) is a closed subset of σ(A), and σloc(A) contains the point
spectrum σp(A) and is included in the approximate point spectrum σap(A) of

A. It is clear that if A does not have the SVEP, then XA(φ) ⊆ XA(V ) for every
open neighborhood V of λ ∈ C, and hence σloc(A) = σ(A). The localizable
spectrum plays an important role in the theory of invariant subspaces, see [9],
[14], [18], [19].

Theorem 2.11. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfying operator equa-
tion ABA = ACA. If A and B are injective then σloc(AC) = σloc(BA).
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Proof. Suppose that λ ∈ σloc(BA). Then XBA(V ) 6= {0} for all open neighbor-
hood V of λ. Thus there exists nonzero x ∈ X such that σBA(x) ⊆ V . It follows
from Lemma 2.2 that σAC(Ax) ⊆ σBA(x) ⊆ V . Since A is injective, Ax 6= 0 and
so YAC(V ) 6= {0} for every open neighborhood V of λ. Hence λ ∈ σloc(AC).

Conversely, suppose that µ ∈ σloc(AC). Then YAC(U) 6= {0} for all open
neighborhood U of µ. Thus there exists nonzero y ∈ Y such that σAC(y) ⊆ U. It
follows from Lemma 2.2 that σBA(BACy) ⊆ σAC(y) ⊆ U. Clearly, BACy 6= 0
and so YBA(U) 6= {0} for every open neighborhood U of µ. Hence µ ∈ σloc(BA).

�

Recall that an operator A ∈ L(X,Y ) is said to be a quasiaffinity if A is
injective and has dense range.

Theorem 2.12. Let A ∈ L(X,Y ) and B,C ∈ L(Y,X) satisfy operator equa-
tion ABA = ACA. Suppose that A,B and C are quasiaffinities. If BA has a
non-trivial closed invariant subspace, then AC has a non-trivial closed invariant
subspace.

Proof. Suppose that BA has a non-trivial closed invariant subspace M. Let
N := ABA(M). Then clearly N is closed and

AC(N) ⊆ AC(ABA(M)) ⊆ ACABA(M) ⊆ ACA(M) = ABA(M) = N.

Since A and B are injective and has dense range, we have {0} 6= N 6= Y. Hence
AC has a non-trivial closed invariant subspace N. �
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