• Title/Summary/Keyword: Linear Receiver

Search Result 301, Processing Time 0.158 seconds

Two-stage ML-based Group Detection for Direct-sequence CDMA Systems

  • Buzzi, Stefano;Lops, Marco
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • In this paper a two-stage maximum-likelihood (ML) detection structure for group detection in DS/CDMA systems is presented. The first stage of the receiver is a linear filter, aimed at suppressing the effect of the unwanted (i.e., out-of-grout) users' signals, while the second stage is a non-linear block, implementing a ML detection rule on the set of desired users signals. As to the linear stage, we consider both the decorrelating and the minimum mean square error approaches. Interestingly, the proposed detection structure turns out to be a generalization of Varanasi's group detector, to which it reduces when the system is synchronous, the signatures are linerly independent and the first stage of the receiver is a decorrelator. The issue of blind adaptive receiver implementation is also considered, and implementations of the proposed receiver based on the LMS algorithm, the RLS algorithm and subspace-tracking algorithms are presented. These adaptive receivers do not rely on any knowledge on the out-of group users' signals, and are thus particularly suited for rejection of out-of-cell interference in the base station. Simulation results confirm that the proposed structure achieves very satisfactory performance in comparison with previously derived receivers, as well as that the proposed blind adaptive algorithms achieve satisfactory performance.

Joint Transmitter and Receiver Design based on Effective-leakage in Multi-user MIMO systems (다중사용자 다중안테나 시스템에서 effective-leakage 기반 송신기와 수신기 결합 설계)

  • Seo, Dong-Joon;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.191-192
    • /
    • 2008
  • We give new definition of the effective-leakage and the signal to effective-leakage plus noise ratio (SELNR) to consider receiver combining motivated by the leakage. We propose a method to find jointly beamforming vector and combining vector for the two linear receivers (maximal ratio combining (MRC) receiver and minimum mean square error (MMSE) receiver) based on the SELNR.

  • PDF

Design And Component Performance Analysis of RF System for W-CDMA Receiver (W-CDMA 수신기 RF System 설계 및 부품 성능 분석)

  • 지만구;이규헌;김학선
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.197-200
    • /
    • 2000
  • In this paper, The RF system of W-CDMA receiver is designed and the performance is analyzed. The linearity characteristic and the noise characteristic are presented in the performance. The linearity characteristic is analyzed by PN and IIP3. The noise characteristic is analyzed by NF. In addition, sweeping of the nonlinear components parameter affecting the linear performance is tested and the most maximal possible parameter to maintain the linear performance is introduced. The transceiver RF system of W-CDMA and cdma2000 is designed and presented adapting the nonlinear parameter introduced.

  • PDF

Design and analysis of OFDM receiver employing LMLE algorithm (LMLE 알고리듬을 이용한 OFDM 수신기 설계 및 분석)

  • 이종열;정영모;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3174-3182
    • /
    • 1996
  • In this paper, a new receiver is proposed for the detection of the OFDM(orthogonal frequency division multiplexing) signals in the time-selective multipath fading channel. For the optimal detection, we estimate the transmitted symbols from OFDM demultiplexing signal using the LMLE(linear masimum likelihold estimation) algorithm. Also, in this paper, the lowerbound for BER(bit error rate) using Taylor series approximation is provided. If the matched filter is used for the OFDM receiver in the time-selectivemultipath fading channel, it is known that the SER(symbol error rate) is always greater than $10^{-1}$, due to the cross-talk between adjacent channels. But, the proposed receiver provides of SER with 15dB SNR. Also, it is found that for the receiver implemented using the LMLE algorithm, the performance is shown to be not affected by the increase of th enumber of subchannel and channel path.

  • PDF

Low Complexity Ordered Successive Cancellation Algorithm for Multi-user STBC Systems

  • Le, Van-Hien;Yang, Qing-Hai;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.162-168
    • /
    • 2007
  • This paper proposes two detection algorithms for Multi-user Space Time Block Code systems. The first one is linear detection Gaussian Elimination algorithm, and then it combined with Ordered Successive Cancellation to get better performance. The comparisons between receiver and other popular receivers, including linear receivers are provided. It will be shown that the performance of Gaussian Elimination receiver is similar but more simplicity than linear detection algorithms and performance of Gaussian Elimination Ordered Successive Cancellation superior as compared to other linear detection method.

dB-Linear CMOS Variable Gain Amplifier for GPS Receiver (dB-선형적 특성을 가진 GPS 수신기를 위한 CMOS 가변 이득 증폭기)

  • Jo, Jun-Gi;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • A dB-linearity improved variable gain amplifier (VGA) for GPS receiver is presented. The Proposed dB-linear current generator has improved dB-linearity error of ${\pm}0.15$dB. The VGA for GPS is designed using proposed dB-linear current generator and composed of 3 stage amplifiers. The IF frequency is assumed as 4MHz and the linearity requirement of the VGA for GPS receiver is defined as 24dBm of IIP3 using cascaded IIP3 equation and the VGA satisfies 24dBm when minimum gain mode. The DC-offset voltage is eliminated using DC-offset cancelation loop. The gain range is from -8dB to 52dB and the dB-linearity error satisfies ${\pm}0.2$dB. The 3-dB frequency has range of 35MHz~106MHz for the gain range. The VGA is designed using 0.18${\mu}m$ CMOS process. The power consumption is 3mW with 1.8V supply voltage.

Taps Delayed Lines Architecture Based on Linear Transmit Zero-Forcing Approach for Ultra-Wide Band MIMO Communication Systems

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.652-656
    • /
    • 2011
  • In this paper, a transmitter-based multipath processing and inter-channel interference (ICI) cancellation scheme for a ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) system is presented. It consists of taps delayed lines and zero-forcing (ZF) filters in the transmitter and correlators in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and Q resolvable multipath components, the BER performance of a linear transmit ZF scheme is analyzed in a log-normal fading channel and also compared with that of a receiver-based ICI rejection approach. It is found that when M ${\leq}$ N, the transmit ZF processing approach outperforms the ZF receiver while making the mobile units low-cost and low-power.

The System of Non-Linear Detector over Wireless Communication (무선통신에서의 Non-Linear Detector System 설계)

  • 공형윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.106-109
    • /
    • 1998
  • Wireless communication systems, in particular, must operate in a crowded electro-magnetic environmnet where in-band undesired signals are treated as noise by the receiver. These interfering signals are often random but not Gaussian Due to nongaussian noise, the distribution of the observables cannot be specified by a finite set of parameters; instead r-dimensioal sample space (pure noise samples) is equiprobably partitioned into a finite number of disjointed regions using quantiles and a vector quantizer based on training samples. If we assume that the detected symbols are correct, then we can observe the pure noise samples during the training and transmitting mode. The algorithm proposed is based on a piecewise approximation to a regression function based on quantities and conditional partition moments which are estimated by a RMSA (Robbins-Monro Stochastic Approximation) algorithm. In this paper, we develop a diversity combiner with modified detector, called Non-Linear Detector, and the receiver has a differential phase detector in each diversity branch and at the combiner each detector output is proportional to the second power of the envelope of branches. Monte-Carlo simulations were used as means of generating the system performance.

  • PDF

Novel New Approach to Improve Noise Figure Using Combiner for Phase-Matched Receiver Module with Wideband Frequency of 6-18 GHz

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • This paper proposes the design and measurement of a 6-18 GHz front-end receiver module that has been combined into a one- channel output from a two-channel input for electronic warfare support measures (ESM) applications. This module includes a limiter, high-pass filter (HPF), power combiner, equalizer and amplifier. This paper focuses on the design aspects of reducing the noise figure (NF) and matching the phase and amplitude. The NF, linear equalizer, power divider, and HPF were considered in the design. A broadband receiver based on a combined configuration used to obtain low NF. We verify that our receiver module improves the noise figure by as much as 0.78 dB over measured data with a maximum of 5.54 dB over a 6-18 GHz bandwidth; the difference value of phase matching is within $7^{\circ}$ between ports.

Receiver Techniques for Ultra-wide-band Multiuser Systems over Fading Multipath Channels

  • Zhou, Xiaobo;Wang, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • We treat the problem of channel estimation and interference cancellation in multiuser ultra-wide-band (UWB) communication systems over multipath fading channels. The UWB system under consideration employs a random time-hopping impulse radio format. We develop a channel estimation method based on linear weighted algorithm. An iterative channel estimation and interference cancellation scheme is proposed to successively improve the receiver performance. We also consider systems employing multiple transmit and/or receive antennas. For systems with multiple receive antennas, we develop a diversity receiver for the wellseparated antennas. For systems with multiple transmit antennas, we propose to make use of Alamouti’s space-time transmission scheme, and develop the corresponding channel estimation and interference cancellation receiver techniques. Simulation results are provided to demonstrate the performance of various UWB receiver techniques developed in this paper.