• Title/Summary/Keyword: Linear Pump

Search Result 179, Processing Time 0.029 seconds

Manufacturing of the Linear Induction EM Pump for the Liquid Sodium (액체소듐 구동용 선형유동전자펌프 제작)

  • 김희령;남호윤;황중선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.434-437
    • /
    • 1999
  • An EM pump is used for the purpose of transporting the electrically conducting liquid sodium of the high temperature that is used as a coolant in the liquid metal reactor. In the present study, the pilot pump has been designed and manufactured for the high temperature of $600^{\circ}C$ by the equivalent circuit materials and the consideration of the materials and functions. The length and diameter of the pump are given as 84 cm and 10 cm each due to the fixed geometry of the circulation system to be installed. The characteristic of the developing pressure and efficiency is found out by using Laithewaite\`s standard design formula. It is shown that the developing pressure and efficiency are maximized at the frequency of 15 Hz from the curve. The annular channel gap of 3.95 mm is selected in the range of the reasonable hydraulic frictional loss. The components of the pump consist of the material for the high temperature. And then, the pump is manufactured to have the nominal flowrate of 40 1/min and developing Pressure of 1.3 bar.

  • PDF

Study on Design of Hydraulic Pump with High Temperature and High Pressure Resistance for Cable-Stayed Bridge (케이블 사장교용 내고온·내고압 유압 펌프의 설계에 관한 연구)

  • Qin, Zhen;Wu, Yu-Ting;Kim, Dong-Seon;Kim, Sang-Bae;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.109-114
    • /
    • 2019
  • Hydraulic pumps are widely used in fields such as machinery manufacturing, engineering and construction. Although the research on hydraulic engineering is mature, it is still necessary to examine various performance aspects in detail for specific applications. This paper will focus on the hydraulic pump used in special construction machinery that needs high temperature and high pressure resistance. It will analyze the theoretical design, structure and thermal characteristics of the pump system using the Fundamentals of Engineering (FE) method, and will measure the key tolerance parameters of the hydraulic pump to ensure the accuracy of the machining. Through this research, a good design method for the linear reciprocating type of hydraulic pump can be summarized.

Dickson Charge Pump with Gate Drive Enhancement and Area Saving

  • Lin, Hesheng;Chan, Wing Chun;Lee, Wai Kwong;Chen, Zhirong;Zhang, Min
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1209-1217
    • /
    • 2016
  • This paper presents a novel charge pump scheme that combines the advantages of Fibonacci and Dickson charge pumps to obtain 30 V voltage for display driver integrated circuit application. This design only requires four external capacitors, which is suitable for a small-package application, such as smart card displays. High-amplitude (<6.6 V) clocks are produced to enhance the gate drive of a Dickson charge pump and improve the system's current drivability by using a voltage-doubler charge pump with a pulse skip regulator. This regulation engages many middle-voltage devices, and approximately 30% of chip size is saved. Further optimization of flying capacitors tends to decrease the total chip size by 2.1%. A precise and simple model for a one-stage Fibonacci charge pump with current load is also proposed for further efficiency optimization. In a practical design, its voltage error is within 0.12% for 1 mA of current load, and it maintains a 2.83% error even for 10 mA of current load. This charge pump is fabricated through a 0.11 μm 1.5 V/6 V/32 V process, and two regulators, namely, a pulse skip one and a linear one, are operated to maintain the output of the charge pump at 30 V. The performances of the two regulators in terms of ripple, efficiency, line regulation, and load regulation are investigated.

Vibration Analysis of Vertical Pumps (수직펌프의 진동해석)

  • 홍진선
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.928-935
    • /
    • 1999
  • Vertical pumps are widely used owing to the fact that they occupy small floor space. In this type of pumps, however, the vibrational problems are very important, since, in many cases, they have less stiffness in comparison with lateral pumps. This study presents a simple solution method for calculating the natural frequencies and modes of vertical pumps. In this study, a mode of a vertical pump was developed and the nondimensional parameters for the vibrational characteristics of it were determined. Added mass was calculated for the effects of water and the transfer matrix method was used.

  • PDF

Experiments of Electromagnetic Pump using Linear Induction Motor (선형유도전동기를 이용한 전자기 펌프 실험)

  • Jeon, Mun-Ho;Kim, Jung-Hyun;Kim, Min-Seok;Kim, Chang-Eob
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.691-692
    • /
    • 2006
  • The electromagnetic pump can transfer molten metals by the electromagnetic force of LIM for molten metals, which are zinc, tin and aluminum. The speed and quantity of the flow are analyzed using magnetohydrodynamics. The molten zinc is used in the experiment and the experimental results are compared with the analysis.

  • PDF

Design and Characteristic Analysis of Vaccum Pump Using Moving Magnet type Linear Oscillatory Actuator (가동 영구자석형 리니어 진동 액츄에이터를 이용한 진공 펌프의 설계 및 특성해석)

  • Cho, Sung-Ho;Lee, Dong-Yup;Kim, Duk-Hyun;Lee, Ho-Kil;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.811-813
    • /
    • 2002
  • This paper deals with the design of vaccum pump using moving magnet type linear oscillaory actuator based on the design procedure and the characteristic analysis. To improve the starting characteristic, the optimum spring constant is detected and redesigned. The parameter was calculated by Finite Element Method(FEM). In order to dynamic characteristic analysis, Time difference method with voltage and kinetic equation is used. The propritey of the improved model is verified through the experimental.

  • PDF

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.