• Title/Summary/Keyword: Linear Prediction Algorithm

Search Result 285, Processing Time 0.03 seconds

Classification of the ECG Beat Using ART Network Based on Linear Prediction Coefficient (선형예측계수에 근거한 ART 네트워크를 이용한 심전도 신호 분류)

  • Park, K.L.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.228-231
    • /
    • 1997
  • In this paper, we designed an ART(Adaptive Resonance Theory) network based on LPC(Linear Prediction Coefficient) for classification of PVB (Premature Ventricular Beat: PVC, LBBB, RBBB). The procedure of proposed system consists of the error calculation, feature generation and processing of the ART network. The error is calculated after processing by linear prediction algorithm and the features of ART network or classification are obtained from the binary ata determined by threshold method. In conclusion, ART network has good performance in classification of PVB.

  • PDF

Formant Detection Technique for the Phonocardiogram Spectra Using the 1st and 2nd Derivatives (심음도 스펙트럼의 1, 2차 도함수를 이용한 형성음 주파수 추출 기술)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1605-1610
    • /
    • 2015
  • This study describes a new method to analyze phonocardiogram acquired from electronic stethoscope. The method uses the formant frequencies of linear prediction spectrum of the phonocardiogram and proposes a novel method for formant detection using the smoothing and the first and second derivatives. For this, stethoscope sounds are acquired in university hospital. The stethoscope signals are preprocessed and analyzed by the Burg algorithm, a kind of linear prediction analysis. Based on the linear prediction spectra, the formant frequencies are estimated. The proposed method has shown better performance in formant frequency detection than the conventional peak picking method.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm

  • Lim, Heesung;An, Hyunuk;Kim, Haedo;Lee, Jeaju
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.

Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods (LPC와 DTW 기법을 이용한 유도전동기의 고장검출 및 진단)

  • Hwang, Chul-Hee;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2011
  • This paper proposes an efficient two-stage fault prediction algorithm for fault detection and diagnosis of induction motors. In the first phase, we use a linear predictive coding (LPC) method to extract fault patterns. In the second phase, we use a dynamic time warping (DTW) method to match fault patterns. Experiment results using eight vibration data, which were collected from an induction motor of normal fault states with sampling frequency of 8 kHz and sampling time of 2.2 second, showed that our proposed fault prediction algorithm provides about 45% better accuracy than a conventional fault diagnosis algorithm. In addition, we implemented and tested the proposed fault prediction algorithm on a testbed system including TI's TMS320F2812 DSP that we developed.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Time Delay Estimation Using Automatic Tracking Window (자동추적윈도우를 이용한 시간지연 추정)

  • 윤병우;신윤기;박의열
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.5
    • /
    • pp.347-354
    • /
    • 1991
  • In this paper, the Automatic Tracking Window(ATW) algorithm is applied to the Generalized Cross-Correlation(GCC) time delay estimation algorithm as a preprocessing. The Linear Prediction(LP) algorithm, which is a pararmetric spectral estimation algorithm, is applied to the time delay estimation. And the ATW, a preprocessing algorithm is applied to this algorithm too. This paper shows that the ATW algorithm attenuates the sidelobes very much and improves the resolution of the timedelay estimation.

  • PDF

Joint Blind Data/Channel Estimation Based on Linear Prediction

  • Ahn, Kyung-Seung;Byun, Eul-Chool;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.869-872
    • /
    • 2001
  • Blind identification and equalization of communication channel is important because it does not need training sequence, nor does it require a priori channel information. So, we can increase the bandwidth efficiency. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind channel estimator and equalizer length mismatch as well as for its simple adaptive algorithms. In this paper, we propose method for fractionally spaced blind equalizer with arbitrary delay using one-step forward prediction error filter from second-order statistics of the received signals for SIMO channel. Our algorithm utilizes the forward prediction error as training sequences for data estimation and desired signal for channel estimation.

  • PDF

Prediction-based Interacting Multiple Model Estimation Algorithm for Target Tracking with Large Sampling Periods

  • Ryu, Jon-Ha;Han, Du-Hee;Lee, Kyun-Kyung;Song, Taek-Lyul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.44-53
    • /
    • 2008
  • An interacting multiple model (IMM) estimation algorithm based on the mixing of the predicted state estimates is proposed in this paper for a right continuous jump-linear system model different from the left-continuous system model used to develop the existing IMM algorithm. The difference lies in the modeling of the mode switching time. Performance of the proposed algorithm is compared numerically with that of the existing IMM algorithm for noisy system identification. Based on the numerical analysis, the proposed algorithm is applied to target tracking with a large sampling period for performance comparison with the existing IMM.

A Study on Estimation of Formant and Articulatory Motion using RLSL Adaptive Linear Prediction Filter (RLSL 적응선형예측필터를 이용한 형성음 및 조음운동 궤적 추정에 관한 연구)

  • Kim, Dong-Jun;Song, Young-Soo;Yoon, Tae-Sung;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.163-166
    • /
    • 1992
  • In this study, the extractions of formant and articulately motion trajectorles from Korean diphthongs are performed by using the RISL adaptive linear prediction filter. This enables us to extract spectrum transition of speech signal accurately. This study showes that the RISL algorithm is superior to the Levinson algorithm, specially in transition part of speech.

  • PDF