• 제목/요약/키워드: Linear Park

검색결과 5,904건 처리시간 0.031초

DC-DC 컨버터에 대한 강인한 PI 제어기 설계 (Design of Robust PI Controller for DC-DC Converter)

  • 이현석;고창민;박성훈;박승규;안호균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.997_998
    • /
    • 2009
  • Nowadays DC-DC converter has been used widely in electronic production. It has a high requirement in wide input voltage, load variations, stability, providing a fast transient response and the most important thing is that it can be applied easily and efficiently. However, it is not easy to be controlled because of nonlinear system. This study introduces a fuzzy linear control design method for nonlinear systems with optimal $H^{\infty}$ robustness performance. First, the Takagi and Sugeno fuzzy linear model is employed to approximate a nonlinear system. Next, based on the fuzzy linear model, a fuzzy controller is developed to stabilize the nonlinear system, and at the same time the effect of external disturbance on control performance is attenuated to a minimum level. Thus based on the fuzzy linear model, ��$H^{\infty}$ performance design can be achieved in nonlinear control systems. Linear matrix inequality (LMI) techniques are employed to solve this robust fuzzy control problem. PI control structure is used and the control gains are determined based on $H^{\infty}$ control.

  • PDF

A Study on Improvement of Operation Efficiency of Magnetic Levitation Train Using Linear Induction Motor

  • Park, Sang Uk;Zun, Chan Yong;Park, Doh-Young;Lim, Jaewon;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • 제9권2호
    • /
    • pp.41-45
    • /
    • 2016
  • In this paper, a study on the efficiency improvement of the magnetic levitation train using the LIM (Linear Induction Motor) was presented. The maglev train has the advantage of being environmentally friendly since much less noise and dust is produced. However, due to structural limitation, compared to a rotating induction motor, linear induction motor, the main propulsion engine of the maglev train has a relatively greater air gap and hence has the lower operation efficiency. In this paper, the relationship between the operating condition of the train and the slip frequency has been investigated to find out the optimum slip frequency that might improve the efficiency of the magnetic levitation train with linear induction motor. The slip frequency is variable during the operation by this relationship only within a range that does not affect the levitation system of the train. After that, the comparison of the efficiency between the conventional control method with the slip frequency fixed at 13.5[Hz] and the proposed method with the slip frequency variable from 9.5[Hz] to 6.5[Hz] has been conducted by simulation using Simplorer. Experiments of 19.5[ton] magnetic levitation trains owned by Korea Institute of Machinery and Materials were carried out to verify the simulation results.

Experimental study of neural linearizing control scheme using a radial basis function network

  • Kim, Suk-Joon;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.731-736
    • /
    • 1994
  • Experiment on a lab-scale pH process is carried out to evaluate the control performance of the neural linearizing control scheme(NLCS) using a radial basis function(RBF) network which was previously proposed by Kim and Park. NLCS was developed to overcome the difficulties of the conventional neural controllers which occur when they are applied to chemical processes. Since NLCS is applicable for the processes which are already controlled by a linear controller and of which the past operating data are enough, we first control the pH process with PI controller. Using the operating data with PI controller, the linear reference model is determined by optimization. Then, a IMC controller replaces the PI controller as a feedback controller. NLCS consists of the IMC controller and a RBF network. After the learning of the neural network is fully achieved, the dynamics of the process combined with the neural network becomes linear and close to that of the linear reference model and the control performance of the linear control improves. During the training, NLCS maintains the stability and the control performance of the closed loop system. Experimental results show that the NLCS performs better than PI controller and IMC for both the servo and the regulator problems.

  • PDF

Linear compressor 토출밸브의 재질에 따른 마멸 특성에 관한 연구 (A study on wear with diacharge valve materials in linear compressor)

  • 박영도;구수학;김정해;박진성;이재근
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.899-903
    • /
    • 2009
  • Recently, research and development of the linear compressor are being active. The reason is that the one has not only higher efficiency than reciprocating type, but also lower noise. But because the dicharge valve of linear compressor is operated in high pressure and temperature circumstance, it is important to prevent leakeage. In this paper three other plastic reinforced composite materials were used. Those are TPI, PEEK and PEK which were containing other volume and kind of carbon fibers. First, for assessing mechanical properties, we measured the hardness and the heating property of the trst sepecimen by the microvickers hardness tester and the differential scanning calorimeter respectively. Finally, through FALEX tester, we could know the characteristics of the wear proving the results of before-conducted experiments.

  • PDF

지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가 (Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis)

  • 박광연;박원석
    • 한국안전학회지
    • /
    • 제33권1호
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers

  • Cho, Kwang-Soo;Kim, Woo-Sik;Lee, Dong-Ho;Park, Lee-Soon;Min, Kyung-Eun;Seo, Kwan-Ho;Kang, Inn-Kyu;Park, Soo-Young;Kwon, Youngdon
    • Macromolecular Research
    • /
    • 제10권5호
    • /
    • pp.266-272
    • /
    • 2002
  • Although the reptational model of Doi and Edwards gives a successful description of viscoelasticity of flexible linear polymers, the success is restricted to the terminal region./sup 1/ There have been several attempts to modify the Doi-Edwards model to describe wider range of time or frequency./sup 2-6/ This paper suggests a simple phenomenological model which can describe wider range of molecular weight than such molecular models can. Although our model is a phenomenological one, it is practical and convenient to predict the effect of molecular weight distribution on linear viscoelastic data because of its simple mathematical form.

고가 선형공원의 녹지계획 사례연구 (Case Study of Green Space Planning in Elevated Linear Parks)

  • 박청인;이주영
    • 한국환경과학회지
    • /
    • 제28권2호
    • /
    • pp.267-276
    • /
    • 2019
  • Elevated linear parks have the potential to support the ecological stability, city amenity, cultural opportunity, and health benefits of urban dwellers; these are increasingly becoming an integral part of the urban infrastructure. Due to structural limitations in space, linear parks need to be planned to increase the value of green space. This study was aimed at advancing urban planning techniques for increasing the value of elevated linear parks, by comparing the Seoullo7017 with the Promenade $plant{\acute{e}}e$ and the Highline. Planning characteristics of these green spaces were analyzed from the perspectives of physical planning factors, amenity values for users, and management systems. Field surveys and virtual tools were used to investigate the current characteristics of these parks, in addition to the literature survey. From the analysis of planning factors, amenity values, and management in the three linear parks, following important recommendations were made in order to promote the values of these parks: (a) diversify planting design for increasing the diversity of green space in a narrow area; (b) bring in various forms of amenities to promote the quality of users' experience; and (c) establish community-based management systems for enhancing regional competitiveness and profit sharing in urban regeneration projects.

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

이족로봇의 선형모델결정과 제어에 관한 연구 (A Study on the Determination of Linear Model and Linear Control of Biped Robot)

  • 박인규;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

OPTIMAL LINEAR CODES OVER ℤm

  • Dougherty, Steven T.;Gulliver, T. Aaron;Park, Young-Ho;Wong, John N.C.
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1139-1162
    • /
    • 2007
  • We examine the main linear coding theory problem and study the structure of optimal linear codes over the ring ${\mathbb{Z}}_m$. We derive bounds on the maximum Hamming weight of these codes. We give bounds on the best linear codes over ${\mathbb{Z}}_8$ and ${\mathbb{Z}}_9$ of lengths up to 6. We determine the minimum distances of optimal linear codes over ${\mathbb{Z}}_4$ for lengths up to 7. Some examples of optimal codes are given.