• Title/Summary/Keyword: Linear Motion Accuracy

Search Result 256, Processing Time 0.029 seconds

Development of a Submicron Order Straightness Measuring Device (서브미크론 진직도 측정장치 개발)

  • 박천홍;정재훈;김수태;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.124-130
    • /
    • 2000
  • For measuring out the submicron order straightness, a precision measuring device is developed in this paper. The device is constructed with a hydrostatic feed table and a capacitive type sensor which is mounted to the feed table. Straightness is acquired as substracting the motion error of feed table from the measured profile with probe. Motion error of feed table is simultaneously compensated upto 0.120${\mu}{\textrm}{m}$ of linear motion error and 0.20arcsec of angular motion error using the active controlled capillary. Reversal method and strai호t-edge is used fur estimating the measuring accuracy and from the experimental result, it is verified that the device has the measuring accuracy 0.030m. Also, through the practical application on the measurement of ground surface, it is confirmed that the device is very effective to measure the submicron order straightness.

  • PDF

An alternating motion technique using linear variable differential transformers (선형변이 차동변압기를 이용한 왕복운동 계측기법)

  • Choi, Ju-Ho;Kim, Yoon-Gyeom;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1380-1383
    • /
    • 1996
  • This paper presents a recoil and counter recoil(R&CR) motion measurement method using linear variable differential transformers(LVDT). The output of a LVDT is obtained from the differential voltage of the 2nd transformers. As a sensor core is attached at the motion body, the output is directly proportional to the core motion. Displacement, velocity and acceleration are measure from the core length. With a comparison between the measurement result and the known value which is obtained by the precision steel tape, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

An Aalternating Motion Measurement Technique Using Linear Variables Differential Transformers (선형변이 차동변압기를 이용한 왕복운동 계측기법)

  • Choi, Ju-Ho;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.455-460
    • /
    • 1997
  • This paper presents a recoil and counter recoil motion measurement method using linear variable differential transformers(LVDT). The output of a LVDT is obtained from the differential voltage of the 2nd transformers. As the sensor core is attached to the motion body, the output is directly proportional to the core motion. Displacement, velocity and acceleration are measured from the core length. A comparison between the measurement result and the known value, which is obtained by the precision steel tape, shows that the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Experimental Verification on Corrective machining Algorithm of Hydrostatic Table (유정압테이블 수정가공 알고리즘의 실험적 검증)

  • 박천홍;이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.425-428
    • /
    • 1997
  • Effectiveness of corrective machining algorithm is verified experimentally in this paper by performing corrective lapping work to single side and double sides hydrostatic tables. Lapping is applied as machining method. Machining information is calculated from measured motion errors by applying the algorithm, without information on rail profile. It is possible to acquire 0.13pm of linear motion error, 1.40arcsec of angular motion error in the case of single side table, and 0.07pm of linear motion error, 1.42arcsec of angular motion error in the case of double sides table. The experiment is performed by the unskilled person after he experienced a little of preliminary machining. Experimental results show that corrective machining algorithm is very effective, and anyone can improve the accuracy of hydrostatic table by using the algorithm.

  • PDF

Performance Improvement of an AHRS for Motion Capture (모션 캡쳐를 위한 AHRS의 성능 향상)

  • Kim, Min-Kyoung;Kim, Tae Yeon;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1167-1172
    • /
    • 2015
  • This paper describes the implementation of wearable AHRS for an electromagnetic motion capture system that can trace and analyze human motion on the principal nine axes of inertial sensors. The module provides a three-dimensional (3D) attitude and heading angles combining MEMS gyroscopes, accelerometers, and magnetometers based on the extended Kalman filter, and transmits the motion data to the 3D simulation via Wi-Fi to realize the unrestrained movement in open spaces. In particular, the accelerometer in AHRS is supposed to measure only the acceleration of gravity, but when a sensor moves with an external linear acceleration, the estimated linear acceleration could compensate the accelerometer data in order to improve the precision of measuring gravity direction. In addition, when an AHRS is attached in an arbitrary position of the human body, the compensation of the axis of rotation could improve the accuracy of the motion capture system.

Force Characteristic Analysis of Linear Motor to Reduce Manufacturing Error in A Linear Motion Machine Tool (선형 운동 공작기계의 가공오차 저감을 위한 리니어 모터의 힘 특성 해석)

  • Cho, Han-Wook;Han, Cheol;Choi, Jang-Young;Choi, Sang-Gyu;Park, Cheol-Ho;Jang, Seok-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1081-1082
    • /
    • 2011
  • In order to predict the accuracy of the linear motion machine tools, the force characteristics such as the detent force, the attraction force and the moment are estimated by analytical method or FEM. In this paper, we proposed the analytical calculation process for the force characteristics of a linear motor. The analytical results are good agreement with FEM one. They could be used for the precision prediction simulator with the information of linear bearings, encoders, etc.

  • PDF

Dynamic Characteristics Analysis of Tubular Type Linear BLDC Motor (원통형 리니어 BLDC 전동기의 동 특성 해석)

  • Kim, Tae-Hyun;Kim, Byong-Kuk;Hwang, Dong-Won;Lee, In-Jae;Jo, Won-Yung;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1462-1464
    • /
    • 2005
  • The demand for linear electrical machines, for both controlled motion and electrical power generation, has increased steadily in recent years. For example, for applications in the high-speed packaging and manufacturing sectors, linear electromagnetic machines, which provide thrust force directly to a payload without the need to convert rotary to linear motion, offer significant advantages in terms of simplicity, efficiency, positioning accuracy, and dynamic performance in both acceleration capability and bandwidth. So, this paper describes analysis the dynamic characteristics of Tubular Type Linear BLDC Motor by simulation and experiments.

  • PDF

A Study on Practical PMM Test Technique for Ship Maneuverability Using System Identification Method (선박의 조종성능 추정에 있어서 시스템식별법을 이용한 PMM 시험 기법에 대한 연구)

  • 이태일;권순홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.25-31
    • /
    • 2002
  • A system identification method is introduced to increase the prediction accuracy of a ship's maneuverability in PMM test, analysis. To improve the accuracy of linear hydrodynamic coefficients, the analysis techniques of pure sway and yaw tests are developed, and confirmed. In the analysis of sway tests, accuracy to linear hydrodynamic coefficients depends on the frequency of sway motion. To obtain nonlinear hydrodynamic coefficients for large drift angles, a combined yaw test is introduced. Using this system identification method, runs of PMM test can be reduced while retaining sufficient accuracy, compared to the Fourier integration method. Through the comparisons with sea trial results and the Fourier integration method, the accuracy and efficiency of the newly proposed system identification method, based on least square method, has been validated.

Finite Element Analysis on the Motion Accuracy of Hydrostatic Table ($2^{nd}$. Analysis and Experimental Verification on Double Sides Table) (FEM을 이용한 유정압테이블의 운동정밀도 해석 (2. 양면지지형 테이블의 해석 및 실험적 검증))

  • Park, Chun-Hong;Lee, Hu-Sang;Kim, Tae-Hyoung;Kim, Min-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.65-70
    • /
    • 2002
  • An analysis method for calculating motion accuarcy of double sides hydrostatic table is proposed in this paper. In this method, profiles of each rails are assumed as periodic function, therefore it is represented as the sum of spacial frequencies. Bearing clearance at any position rail is depended on the variation of linear, angular motion error of table and the form errors of both sides of a rail. Finite element method is applied to calculate pressure distributions in bearing clearance. In order to simplify the analyzing process, double sides table model is converted into equivalent single side table model. Results calculated by the proposed modeling method agree well with the results directly caculated by double sides modeling method, and also agree well with experimental results. From the theoretical and experimental analysis, it is verified that the proposed analysis method is very effective to analyze the motion accuracy of double sides hydrostatic table.

A Development of Recoil & Counter Recoil Motion Measurement System Using LVDT

  • Park, Ju-Ho;Hong, Sung-Soo;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.214-219
    • /
    • 2000
  • This paper presents a recoil and counter recoil motion measurement system using linear variable differential transformers (LVDT). The output of the LVDT is obtained from the differential voltage of the secondary transformers. Since a transducer core is attached to the motion body, the output is directly proportional to the movement length of the core. Displacement, velocity and acceleration are measured from the LVDT. With a comparison between the measurement result and the reference value obtained by the highly accurate Vernier calipers, it is proved that the measurement system with the LVDT is applicable to the test of the moving part of the mechanism with better accuracy.

  • PDF