• Title/Summary/Keyword: Linear Models

Search Result 3,332, Processing Time 0.022 seconds

DCS Model Calculation for Steam Temperature System

  • Hwang, Jae-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1201-1204
    • /
    • 2004
  • This paper suggests a DCS (Distributed Control System) model for steam temperature system of the thermal power plant. The model calculated within sectional range is linear. In order to calculate mathematical models, the system is partitioned into two or three sectors according to its thermal conditions, that is, saturated water/steam and superheating state. It is divided into three sections; water supply, steam generation and steam heating loop. The steam heating loop is called 'superheater' or steam temperature system. Water spray supply is the control input. A first order linear model is extracted. For linear approach, sectional linearization is achieved. Modeling methodology is a decomposition-synthetic technique. Superheater is composed of several tube-blocks. For this block, linear input-output model is to be calculated. Each tiny model has its transfer function. By expanding these block models to total system, synthetic DCS linear models are derived. Control instrument include/exclude models are also considered. The resultant models include thermal combustion conditions, and applicable to practical plant engineering field.

  • PDF

An assessment of non-linear elastic and elasto-plastic analyses with regards to tubular steel piles embedded in sands

  • Adolfo Foriero;Zeinab Bayati
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.397-409
    • /
    • 2023
  • This study examines two traditional approaches (non-linear elastic and elasto-plastic) in association with 2D and 3D FEM analyses of a box-section pile embedded in sand. A particular emphasis is placed on stress singularities concerning both reentrant corners of the pile section and the resulting tension zones. From the experience gained in this study, non-linear elastic soil models are less restrictive when one considers stress singularities and their possible effects on convergence of the solution. At least for monotonic loading, when compared with field tests, non-linear elastic models yield better results than the plasticity ones. On the other hand, although elasto-plastic models are not limited to monotonic loading, they are much more sensitive to stress singularities. For this reason, a spherical elastic region is necessary at the pile tip to ensure convergence. Without this region, one must artificially impose an apparent cohesion to limit the tension stresses within a sand medium.

A study on Parameters of Linear reservoir models (선형저수지 모형의 매개변수연구)

  • 고재웅;서영제
    • Water for future
    • /
    • v.20 no.3
    • /
    • pp.229-235
    • /
    • 1987
  • The purpose of this study is to estimate the parameters of linear reservoir models in order to derive the Instantaneous unit hydrograph from a given small experimental watershed. The linear reservoir model is a conceptual model, consisting of cascade or parallel equal linear reservoirs, preceded by a linear channel which involved Nash, SLR(single linear reservoir) and 2-PLR(two-parallel linear Reservoir) model. the Nash model have two parameters N and K, single linear reseroir has one parameter $K_I$ and two-parallel linear reservoirs have two parameters $K_1,\;K_2$; where N denote the number of reservoirs and K is the storage coefficient of each reservoirs.

  • PDF

A comparative study of the models to predict aeroelastic vibrations of circular cylinder and chimneys

  • Rahman, Saba;Jain, Arvind K.;Bharti, S.D.;Datta, T.K.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.35-54
    • /
    • 2022
  • A comparative study of aeroelastic vibrations of spring-mass cylinder and chimneys, with the help of a few wake oscillator models available in the literature, is presented. The models include those proposed by Facchinetti, Farshidian and Dolatabadi method-I, Farshidian and Dolatabadi method-II, de Langre, Skop and Griffin. Besides, the linear model proposed by Simiu and Scanlan is also incorporated in the study. For chimneys, the first mode oscillation is considered, and the top displacements of the chimneys are evaluated using the considered models. The results of the analytical model are compared with those obtained from the numerical solution of the wake-oscillator coupled equations. The response behavior of the cylinder and three chimneys of different heights are studied and compared with respect to critical parametric variations. The results of the study indicate that the numerical analysis is essential to capture the effect of non-linear aeroelastic phenomena in the solutions, especially for small damping. Further, except for the models proposed by Farshidian and Dolatabadi, other models predict nearly the same responses. The non-linear model predicts a much higher response as compared to the linear model.

Estimation of Diameter and Height Growth in Pinus thunbergii Stands Using Linear and Nonlinear Growth Functions (곰솔임분(林分)의 직경(直徑) 및 수고생장(樹高生長) 추정(推定)에 관한 연구(硏究))

  • Park, Myeong Sookn;Chung, Young Gwann
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.47-54
    • /
    • 1999
  • To estimate optimal tree diameter and height growth function in Pinus thunbergii stands with site index of 12 class, quoted from two linear models of linear transformation(1) and linear transformation (2) and four non-linear models of exponential, Gompertz, Chapman-Richards, and Weibull etc.. Analyzed correlation among the estimated tree diameter and height by these function models, and observed diameter and height growth were compared. In the results of tree diameter and height growth estimation by stand age, non-linear models showed better appropriation than linear model and Chapman-Richards model was most fitted for tree height growth but few, if any, differences among their nonlinear models. Therefore, it is consider to be much more study about non-linear model to estimate tree diameter and height growth in the actual stands hereafter.

  • PDF

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

Improved Algorithm for Case-Deletion Diagnostic in Mixed Linear Models

  • Lee, Jang-Teak
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.677-686
    • /
    • 2000
  • Outliers may occur with respect to any of the random components in mixed linear models. We develop a use of simple, inexpensive updating formulas to consider the effect of case-deletion for mixed linear models. The method described here requires inversions of an n x n matrix, where n is the number of nonempty cells. A numerical example illustrates the use of computational formulas.

  • PDF

Intensity estimation with log-linear Poisson model on linear networks

  • Idris Demirsoy;Fred W. Hufferb
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • Purpose: The statistical analysis of point processes on linear networks is a recent area of research that studies processes of events happening randomly in space (or space-time) but with locations limited to reside on a linear network. For example, traffic accidents happen at random places that are limited to lying on a network of streets. This paper applies techniques developed for point processes on linear networks and the tools available in the R-package spatstat to estimate the intensity of traffic accidents in Leon County, Florida. Methods: The intensity of accidents on the linear network of streets is estimated using log-linear Poisson models which incorporate cubic basis spline (B-spline) terms which are functions of the x and y coordinates. The splines used equally-spaced knots. Ten different models are fit to the data using a variety of covariates. The models are compared with each other using an analysis of deviance for nested models. Results: We found all covariates contributed significantly to the model. AIC and BIC were used to select 9 as the number of knots. Additionally, covariates have different effects such as increasing the speed limit would decrease traffic accident intensity by 0.9794 but increasing the number of lanes would result in an increase in the intensity of traffic accidents by 1.086. Conclusion: Our analysis shows that if other conditions are held fixed, the number of accidents actually decreases on roads with higher speed limits. The software we currently use allows our models to contain only spatial covariates and does not permit the use of temporal or space-time covariates. We would like to extend our models to include such covariates which would allow us to include weather conditions or the presence of special events (football games or concerts) as covariates.

A Simulation Approach for Testing Non-hierarchical Log-linear Models

  • Park, Hyun-Jip;Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.357-366
    • /
    • 1999
  • Let us assume that two different log-linear models are selected by various model selection methods. When these are non-hierarchical it is not easy to choose one of these models. In this paper the well-known Cox's statistic is applied to compare these non-hierarchical log-linear models. Since it is impossible to obtain the analytic solution about the problem we proposed a alternative method by extending Pesaran and pesaran's (1993) simulation approach. We find that the values of proposed test statistic and the estimates are very much stable with some empirical results.

  • PDF

Development of Runoff Hydrograph Model for the Derivation of Optimal Design Flood of Agricultural Hydraulic Structures(II) (농업수리구조물의 적정설계홍수량 유도를 위한 유출수문곡선 모형의 개발(II))

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.112-126
    • /
    • 1996
  • This study was conducted to develop an optimal runoff bydrograph model by comparison of the peak discharge and time to peak between observed and simulated flows derived by four different models, that is, linear time-invariant, linear time-variant, nonlinear time-invariant and nonlinear time-variant models under the conditions of heavy rainfalls with regionally uniform rainfall intensity in short durations at nine small watersheds. The results obtained through this study can be summarized as follows. 1. Parameters for four models including linear time-invariant, linear time-variant, nonlinear time-invariant and nonlinear time-variant models were calibrated using a trial and error method with rainfall and runoff data for the applied watersheds. Regression analysis among parameters, rainfall and watershed characteristics were established for both linear time-invariant and nonlinear time-invariant models. 2. Correlation coefficients of the simulated peak discharge of calibrated runoff hydrographs by using four models were shown to be a high significant to the peak of observed runoff graphs. Especially, it can be concluded that the simulated peak discharge of a linear time-variant model is approaching more closely to the observed runoff hydrograph in comparison with those of three models in the applied watersheds. 3. Correlation coefficients of the simulated time to peak of calibrated runoff hydrographs by using a linear time-variant model were shown to be a high significant to the time to peak of observed runoff hydrographs than those of the other models. 4. The peak discharge and time to peak of simulated runoff hydrogaphs by using linear time-variant model are verified to be approached more closely to those of observed runoff hydrographs than those of three models in the applied watersheds. 5. It can be generally concluded that the shape of simulated hydrograph based on a linear time-variant model is getting closer to the observed runoff hydrograph than those of three models in the applied watersheds. 6. Simulated hydrographs using the nonlinear time-variant model which is based on more closely to the theoritical background of the natural runoff process are not closer to the observed runoff hydrographs in comparison with those of three models in the applied watersheds. Consequently, it is to be desired that futher study for the nonlinear time-variant model should be continued with verification using rainfall-runoff data of the other watersheds in addition to the review of analyical techniques.

  • PDF