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Abstract
Purpose: The statistical analysis of point processes on linear networks is a recent area of research that studies

processes of events happening randomly in space (or space-time) but with locations limited to reside on a linear
network. For example, traffic accidents happen at random places that are limited to lying on a network of streets.
This paper applies techniques developed for point processes on linear networks and the tools available in the
R-package spatstat to estimate the intensity of traffic accidents in Leon County, Florida.

Methods: The intensity of accidents on the linear network of streets is estimated using log-linear Poisson
models which incorporate cubic basis spline (B-spline) terms which are functions of the x and y coordinates.
The splines used equally-spaced knots. Ten different models are fit to the data using a variety of covariates. The
models are compared with each other using an analysis of deviance for nested models.

Results: We found all covariates contributed significantly to the model. AIC and BIC were used to select 9
as the number of knots. Additionally, covariates have different effects such as increasing the speed limit would
decrease traffic accident intensity by 0.9794 but increasing the number of lanes would result in an increase in the
intensity of traffic accidents by 1.086.

Conclusion: Our analysis shows that if other conditions are held fixed, the number of accidents actually
decreases on roads with higher speed limits. The software we currently use allows our models to contain only
spatial covariates and does not permit the use of temporal or space-time covariates. We would like to extend our
models to include such covariates which would allow us to include weather conditions or the presence of special
events (football games or concerts) as covariates.
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1. Introduction

Not only do accidents cause injuries and fatalities, they can also destroy a city’s economy. In
2015, the US spent $871 billion on the economic and social harm caused by vehicular accidents,
including one billion dollars spent toward vehicle emergency services (Lowy, 2014). Understanding
traffic accidents, specifically where they occur, is an ongoing field of research. Various discussions
and papers have offered solutions to this problem.

Traffic accidents occur randomly in space and time. However, the occurrence of traffic crashes on
certain roads relate to the road’s traffic volume, the road’s physical characteristics (e.g., sharp turns
and curve depth), environmental effects (rain, fog), and light conditions (daylight and dark). Factors
like these are connected to spatial patterns (Xie and Yan, 2008).
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Spatial point pattern analysis is one way to analyze this type of problem and has been widely used
in geographical information systems (GIS) (Okabe et al., 2009). Spatial point patterns: Methodology
and applications with R by (Baddeley et al., 2015) and spatial analysis along networks by (Okabe and
Sugihara, 2012) are two books that describe this type of analysis in detail.

Spatial point pattern analysis can be classified into two broad topics; First-order properties focus
on properties of point process events and investigate the variation of the points’ density (intensity)
across a study window (area). Intensity estimation and testing for complete spatial randomness are
concerned with first-order properties. Second-order properties examine spatial dependency and inves-
tigate the interaction between two events (points) of the process as a function of the distance between
them or, more generally, of their positions. The K and L functions are commonly used displays of
second-order properties.

The estimation of (spatial) intensity or population density is very important in applications. Inten-
sity is the expected number of points per unit in a study area. When it comes to estimating popula-
tions such as bird populations in ecology, forest fires in agriculture or disease cases in public health,
intensity helps in comparing different events or the same event’s different levels and investigate how
intensities vary over the spatial location. For example, the intensity of subjects with a certain disease
can be compared with non-disease subjects to examine how the disease varies over the study area
(Zimmerman, 2008). Another example is that the probability of finding a goldfield depends on the
existence of faults. When one identifies that there is a spatial modification, then statistical methods
to predict this function can be used. One can investigate intensity on a linear network as being either
homogeneous or inhomogeneous.

Homogeneous Intensity: Often the first step for analyzing point patterns begins with the assump-
tion of homogeneity. Let X be a point process on a linear network L. If the intensity is constant over
the entire network, then we say the point process is homogeneous. If a point process on L is homo-
geneous with constant intensity λ, then the expected number of points of X falling in any subset of
B ⊆ L is equal to the total length of B, `(B), multiplied by the intensity (Baddeley et al., 2015),

En (X ∩ B) = λ` (B) . (1.1)

If X is homogeneous with intensity λ, then an unbiased estimator of λ on a linear network can be
calculated as the ratio of the total number of points in the study area over the total length of the
network: λ̂ = n(x)/`(l).

Inhomogeneous intensity: If the intensity of a point process is not constant, then we say it is
inhomogeneous. Let X be a point process on a linear network L with intensity function λ(u). Then

En (X ∩ B) =

∫
B
λ (s) d1s. (1.2)

In Equation (1.2), s denotes a point in L, λ(s) is the expected number of points of X per unit length
on the linear network L at the point s, n(X ∩ B) is the number of points of X in the subset B, and d1s
represents one-dimensional integration with respect to arc length (Baddeley et al., 2015; Ang et al.,
2012).

2. Materials and methods

2.1. Spatial point processes on linear networks

Although spatial point processes on the line and plane have been studied since at least the 1950’s,
work on spatial point processes on linear networks is a recent development. There are important
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Figure 1: Points on a planar and linear network (Note: (a) and (b) are the same data points).

differences between the analysis of point processes on Euclidean spaces (e.g., the line or plane) and
point processes on a linear network. For example, the Euclidean distance metric figures prominently
in the development of point processes on the plane, but may be an insufficient or misleading distance
metric for spatial point patterns on linear networks, such as those arising in the study of the locations
of traffic accidents, crime on sidewalks, road-kill, the population distribution of dendrites, or the
heterogeneity of tree species along a river. For point processes on a linear network, it is usually more
appropriate to define the distance between two points on the linear network to be the length of the
shortest path between these two points traveling along the linear network.

Another important difference between point processes on the plane and on a linear network is
illustrated in Figure 1. When one looks at Figure 1(a), one may not think the points are randomly
distributed, but Figure 1(b) clearly shows that the points are randomly distributed (Okabe and Sugi-
hara, 2012) on a linear network. The notions of “randomness” or “uniformity” are very different on
the plane and on a linear network.

2.2. Definitions relating to linear networks

The line segment l on the plane with endpoints u, v ∈ R2, u , v can be written in any of the
following ways:

l = lu,v = [u, v] = {tu + (1 − t) v : 0 ≤ t ≤ 1} .

The length of this segment can be written as

| l |= | lu,v |= ‖u − v‖,

where ‖.‖ is the usual Euclidean norm in R2 which for z = (z1, z2) is defined by ‖z‖ =

√
z2

1 + z2
2 (Ang

et al., 2012; Moradi et al., 2019).
A linear network L is a combination of line segments (edges) li:

L =

n⋃
i=1

li .
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The total length of the linear network L is defined by

| L |=
n∑

i=1

‖li‖ .

According to Okabe and Sugihara (2012), the endpoints of segments are called nodes or vertices,
and the degree of a node u, written as d(u), is the number of segments that are connected to the node.
When d(u) = 1, then u is called a terminal node (Mc Swiggan et al., 2017).

A path between u and v in a linear network L is a sequence x0, x1, . . . , xm of points in L such that
x0 = u, xm = v, and [xi, xi+1] ⊂ L for each i = 0, . . . ,m−1. This path is denoted by P(u, x1, . . . , xm−1, v).
The length of a path P(u, x1, . . . , xm−1, v) on L is defined to be

‖u − x1‖ + ‖x1 − x2‖ + · · · + ‖xm−1 − v‖ .

The shortest-path distance between two points u and v in a linear network L is the length of the
shortest-path in L between u and v; this distance is denoted by dL(u, v).

Ang et al. (2012) notes that a point process X on a linear network L is a special case of a point
process on a planar space. We assume that X is simple, meaning that it does not have any coincident
points. Each realization of X is a finite set x = {x1, . . . , xn} of distinct points xi ∈ L, where n ≥ 0 is
(typically) random and not fixed in advance.

2.3. Log-linear Poisson models on linear networks

Poisson processes require independence and randomness of events, but in spatial data settings,
this is not always the case. Therefore, Poisson processes are mainly used as a benchmark model (Last
and Penrose, 2017; Baddeley et al., 2015; Bivand et al., 2008; Illian et al., 2008; Johnson, 2010).

Definitions relating to the Poisson process come from Last and Penrose (2017), Johnson (2010)
and Baddeley et al. (2015).

Our point processes will be defined on a set S ⊆ Rd. Let λ : S → [0,∞) be locally integrable,
that is,

∫
B λ(u) du < ∞ for all bounded sets B ⊆ S , and define the measure µ(B) =

∫
B λ(u) du. For

convenience, for any sets X and B define XB = X ∩ B.

Definition 1. Let f be a density function on a set B ⊆ S and n ∈ N. A point process X consisting
of n independent and identically distributed points with common density f is called a binomial point
process of n points in B with density f :

X ∼ binomial (B, n, f ) = Bin (B, n, f ) .

Definition 2. Suppose X is a point process on S . If X satisfies the following properties it will be
called a Poisson process with intensity λ and intensity measure µ which we denote by

X ∼ Poisson (S , λ) .

• For any bounded set B ⊆ S such that µ(B) < ∞, we have n(XB) ∼ Poisson(µ(B)).

• For any n ∈ N and B ⊆ S such that 0 < µ(B) < ∞ we have

[ XB | N(B) = n ] ∼ Bin
(
B, n,

λ(u)
µ(B)

)
.
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Algorithm 1 Simulation of Poisson process
1-Simulate N(S ) ∼ Poisson(µ(S )),
2-Generate N(S ) i.i.d. points on S from the density λ(·)/µ(S ).

The density function for the binomial point process above is f (·) = λ(·)/µ(B)

Define N(B) = n(XB) to be the number of points of X in B. If X ∼ Poisson(S , λ) and B ⊆ S is
bounded, then

E (N (B)) = µ (B) .

When S is a bounded space, one can simulate X ∼ Poisson(S , λ) as follows.

Definition 3. If X ∼ Poisson(S , λ), then X is called a homogeneous Poisson process with intensity
λ0 if µ(B) = λ0B for all B ⊆ S where B denotes the Lebesgue measure (area) of B. If X is not
homogeneous for any value of λ0, then X is said to be an inhomogeneous Poisson process with
intensity λ. For this process

EN (B) = µ (B) =

∫
B
λ (s) ds .

Property: If X ∼ Poisson(S , λ) and B1, B2, . . . , Bm are disjoint bounded subsets of S , then N(B1),
N(B2), . . . , N(Bm) are independent random variables.
Property: Suppose X is a homogeneous Poisson process and B ⊆ S is bounded. Conditional on
N(XB) = n, these n points are independent and uniformly distributed in B.

Definition 4. A point process X on Rd is stationary if its distribution is invariant under spatial shifts.

Definition 5. A point process X on Rd is isotropic if its distribution is invariant under rotations about
the origin.

In applications it is often necessary to simulate inhomogeneous Poisson processes. Baddeley
et al. (2015) offered a computationally fast strategy for inhomogeneous Poisson process on planar
spaces which is to split space into pixels, compute the probability that each pixel contains an event,
and select pixels at random using these probabilities. Afterward, they pointed out that to create an
inhomogeneous Poisson process with intensity λ(u) on a linear network L, the linear network can be
split into line segments and a similar approach as in planar spaces then carried out.

Fitting a Poisson model: When applying Poisson process models on the plane or on a linear
network, it is common to assume the intensity has a log-linear relationship to the covariates in the
model. A log-linear model has the form:

λθ (s) = exp
(
B (s) + θT Z (s)

)
= exp (B (s) + θ1Z1 (s) + · · · + θmZm (s)) , (2.1)

where

• B(s) is a scalar baseline function.

• Z(s) is an m-dimensional spatial covariate vector.

• θ is a parameter vector.
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Taking the natural logarithm of both sides, the intensity becomes a linear function of the parameters
(Baddeley et al., 2015).

log (λθ (s)) = B (s) + θT Z (s) . (2.2)

Working with a log-linear model has an important advantage in that the intensity is always positive
regardless of the values of B(s) and the vectors θ and Z(s).

The log-likelihood function for a realization X = {x1, x2, . . . , xn} of a Poisson process with intensity
λθ(s) observed on a region W ⊆ L is given by

log L (θ) =
∑

i

log λθ (xi) −
∫

W
λθ (s) d1s. (2.3)

For the log-linear model in (2.1), this assumes a standard exponential family form which satisfies
all the regularity conditions required for the consistency and asymptotic normality of the maximum
likelihood estimates and the asymptotic distribution of likelihood ratio test statistics. (See, Baddeley et
al. (2015) for a discussion of the likelihood theory for Poisson processes and further references.) As a
result of this, when fitting our log-linear Poisson models using the lppm function in the spatstat ver-
sion 2.3.4 package, we have all the standard machinery of maximum likelihood estimation available
to us: Parameter estimates with accompanying standard errors and confidence intervals, likelihood
ratio tests for comparing nested models, and AIC values for use in model selection.

The integral in (2.3) has no analytic form and must be approximated by numerical methods, but
other than this the maximization of the log-likelihood can be accomplished by quite standard meth-
ods. The spatstat package employs an approach known as the Berman-Turner device (Berman
and Turner, 1992) to convert the maximization problem into a form that can be handled by the glm
function in R.

The log-linear Poisson process models described above are closely related to the Poisson regres-
sion models commonly employed to model count data. Poisson regression is frequently applied to data
consisting of regional counts of some event, for example, the number of murders in various towns, the
number of homes sold in various neighborhoods, the number of cases of pancreatic cancer in various
counties, etc. One can in fact approximate the log-linear model for a Poisson process X given in (2.1)
by a Poisson regression model constructed by dividing the observation window W into disjoint regions
C1,C2, . . . ,Cm which are small enough so that the covariate vector Z(s) is essentially constant within
each region, and then fitting a Poisson regression model to the regional counts yi = n(X ∩Ci).

3. Data analysis

Leon County, Florida traffic accident data is used for real data analysis purpose. Prior to the data
analysis, two steps were done. The first is using shapefiles to create a linear network representing the
roads in Leon County. The second is gathering the data set. The data set, which totals 59,773 accident
records, consists of accidents occurring from 2013 through 2019, and was provided by the GeoPlan
Center affiliated with the Department of Urban & Regional Planning at the University of Florida.
Creating the linear network of roads in Leon County required shapefiles which were available as
online resource (Florida Department of Transportation, 1996; Administration, 2009).

A shapefile is a spatial data storage unit which has information on events’ geographical location
and related attributes. The shapefile can contain different elements such as points, lines, and poly-
gons (Engel, 2017). Various R packages (sp, sf, rgdal, spatstat, etc.) supply object classes and
software for the storage and manipulation of spatial data.
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(a) The traffic signals (b) The intersections

Figure 2: Traffic signal and intersection locations.

• Points (event locations) may be stored in SpatialPointsDataFrame with or without attributes.
For example: The location of trees and their heights, or the location of a hospital with breast cancer
patients and patients’ ages.

• Lines are connections of vertices. Some examples of lines include rivers, roads, and neurons. They
can be stored in a SpatialLinesDataFrame

• Polygons are three or more vertices that are connected and closed. Examples are lakes, islands,
counties, oceans, countries and continents. They can be stored in a SpatialPolygonsDataFrame.

Locations of bike lanes, speed limits, annual average daily traffic (AADT), annual average daily
truck traffic (TruckAADT), road width, and road direction information are downloaded as individual
SpatialLinesDataFrame objects from the Florida department of transportation (FDOT)’s website.
This network information is combined in a shapefile (shown in Figure 3) which created the Leon
County linear network. The locations of the traffic signals and the locations of intersections are down-
loaded from the FDOT website as a SpatialPointsDataFrame which is shown in Figure 2.

The linear network of roads in Leon County is created from 8,417 vertices and 8,563 lines. There
are 346 different segments which are individual streets or roads, each of which may contain many
lines. The same covariates are defined on each segment. These covariates are constant on each seg-
ment, but may assume different values on different segments. The values of the covariates for six
different segments (roads) are displayed in Table 1. The covariates are described below.

• “Swid” represents the ID number of the segment.

• “AADT” represents the annual average daily traffic volume in the segment.

• “TruckAADT” represents the annual average daily truck traffic in the segment.

• “Bikelane” represents whether or not that particular road has a bike lane.

• “Width” represents the width of the road.

• “Speed” represents the speed limit in the segment.

• “Road Direct” represents the direction (numbered 1 to 8) of a particular road.
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Figure 3: Spatial lines data frame.

• “Lane Cnt” represents the number of lanes in the segment.

• “Length” represents the length of the segment.

The shapefile also contains the spatial locations x and y of points on the network, but these are not
shown in Table 1.

There are two more covariates additional to the ones in Table 1: The distance to closest intersection
and the distance to closest traffic signal. These covariates are computed using the locations of the
intersections and traffic signals shown in Figure 2.

Table 2 shows a few fitted models (of increasing complexity) and their computed AIC values. The
best model in Table 2 is Model 10. The covariates used in the best model are speed limit, annual
average daily traffic (AADT), TruckAADT, the number of lanes, existence of bike lane (1-yes, 0-no),
road direction, width of the road, distance to the nearest intersection, and distance to the nearest traffic
signal. Additionally, we have used cubic basis spline (B-spline) terms which are functions of the x and
y coordinates. The B-spline terms incorporate a spatial trend of the form f (x) + g(y) into our model,
where f (x) and g(y) represent smoothly varying functions of the x and y coordinates, respectively. The
function f (x) is a piecewise polynomial of degree 3. The points at which the pieces join are called
‘knots’. In our work we choose the knots to be equally spaced between the minimum and maximum
values of x in the study region, that is, when the number of knots is k, we take equally spaced points
min(x) = x0 < x1 < x2 < · · · < xk < xk+1 = max(x) and use the interior points x1, x2, . . . , xk as the
k knot values. The degrees of freedom (number of parameters) in the polynomial f (x) is k + 3. The
discussion for the function g(y) is similar. In Model 10 of Table 2 we use k = 9 knots for both f (x) and
g(y). The parameter estimates, standard errors, and 95% confidence intervals for Model 10 are given
in Table 3. In this table we see that all the covariates are significant. There are 12 B-spline parameters
reported for both the x and y coordinates, consistent with there being 9 knots for both x and y.

The number of knots used when fitting a model containing B splines affects the accuracy and
smoothness of the model fit (Atilgan and Bozdogan, 1990). Using too many knots can result in over-
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Table 1: Some of the attributes carried by the spatial lines data frame for Leon County, shown for six segments

Swid AADT TruckAADT Bikelane Width Speed Road Direc Lane Cnt Length
1 1 16400 1099 0.00 12.00 55 8 2 2.87
2 2 6000 150 0.00 11.00 35 2 2 0.64
3 3 35500 2769 1.00 36.00 45 8 3 0.43
4 4 5100 128 0.00 12.00 35 3 1 0.63
5 5 19100 1051 1.00 24.00 45 8 4 1.33
6 6 15300 1469 1.00 24.00 45 8 1 2.20

Table 2: Log-linear models and their AIC

Model AIC BIC
1 Lnet ∼ 1 427831.0 427840.0
2 Lnet ∼ speed 409494.0 409511.9
3 Lnet ∼ bs(x)+bs(y) 355307.5 355532.5
4 Lnet ∼ bs(x)+bs(y)+DistT+DistI 335137.6 335380.5
5 Lnet ∼ speed+Truck+Lane+AADT+bike 353599.0 353653.0
6 Lnet ∼ speed+Truck+Lane+AADT+road+bike+Width 349978.8 350104.8
7 Lnet ∼ speed+Truck+Lane+AADT+road+bike+Width+DistT 339781.7 339916.7
8 Lnet ∼ speed+Truck+Lane+AADT+road+bike+Width+DistT+DistI 325754.5 325898.5
9 Lnet ∼ speed+Truck+Lane+AADT+road+bike+Width+DistT+DistI+bs(x) 322253.8 322505.8

10 Lnet ∼ speed+Truck+Lane+AADT+road+bike+Width+DistT+DistI+bs(x)+bs(y) 320132.4 320492.4

fitting (Likhachev, 2017). One way to find the optimal number of knots is using the Akaike informa-
tion criterion (AIC), which can be computed as AIC = −2 log Lmax + 2p, where Lmax is the maximum
likelihood for the model and p is the number of parameters in the model. When the number of knots is
large, the parameter estimates may fail to converge or the Fisher information matrix may be singular
so that standard errors cannot be produced. Difficulties can also arise when selecting the locations of
the knots.

One solution to these problems is to use a limited number of knots. For the covariates in Model
10, we identified 10 as the largest number of knots for which the estimates converge. Restricting the
number of knots to be at most 10 for both x and y, the minimum AIC is achieved when the number
of knots is 9 for both the x and y. Table A1 shows the computed AIC numbers for various number of
knots in the model, with some omitted for brevity. The estimates in Table 3 is based on using 9 knots
for both x and y.

We have also tried the Bayesian information criterion (BIC) which is another method for selecting
the best model, the formula for which is BIC = −2 log(Lmax) + p log(N), where N is the sample size
and p is the number of parameters used in the model. Table A2 shows that using BIC leads to the
same conclusion as AIC.

Model Comparison: Model comparison is an important part of choosing the best fitting model.
Agresti (2003) noted that only nested models can be compared by formal statistical tests. Nested
models are two models in which one model contains all the terms of the other, and at least one
additional term. Not all models are nested, and comparing non-nested models can be done using the
AIC, BIC, and other model selection criteria. According to Agresti (2003) the model with the smallest
AIC is considered the best. As shown in Table 2, Model 10 has the smallest AIC among those listed.

Two nested log-linear Poisson models can be compared using a likelihood ratio test (LRT). Under
the null hypothesis that the additional parameters in the larger model are all zero, the decrease in the
deviance has an asymptotic χ2 distribution with degrees of freedom equal to the number of added
parameters in the larger model. The sequence of 10 models in Table 2 is not nested, but the subse-
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Table 3: Estimates, standard errors and confidence intervals for Model 10

Estimate S.E. CI95.lo CI95.hi p-value Zval
(Intercept) 28.46 2.214 24.12 32.80 <2.2e-16 12.85

speed −2.07e-02 8.77e-04 −2.24e-02 −1.90e-02 <2.2e-16 −23.67
Truck −6.56e-05 1.20e-05 −8.93e-05 −4.19e-05 <2.2e-07 −5.429
Lane 8.31e-02 8.21e-03 6.70e-02 9.92e-02 <2.2e-16 10.11

AADT 4.68e-05 6.58e-07 4.55e-05 4.81e-05 <2.2e-16 71.17
road2 −5.31e-02 1.39e-02 −8.04e-02 −2.59e-02 <2.2e-04 −3.825
road3 1.59e-01 1.16e-02 1.36e-01 1.82e-01 <2.2e-16 13.72
road4 2.69e-01 1.70e-02 2.35e-01 3.02e-01 <2.2e-16 15.82
road5 3.51e-01 2.90e-02 2.94e-01 4.08e-01 <2.2e-16 12.09
road6 8.90e-01 7.89e-02 7.35e-01 1.04e+00 <2.2e-16 11.27
road7 −1.16e-01 4.01e-02 −1.95e-01 −3.80e-02 <2.2e-03 −2.908
road8 8.78e-02 1.97e-02 4.90e-02 1.26e-01 <2.2e-06 4.440
bike −2.70e-02 1.10e-02 −4.86e-02 −5.39e-03 <2.2e-02 −2.449

Width 1.35e-03 6.74e-04 3.06e-05 2.67e-03 <4.5e-02 2.005
DistI −7.55e-03 8.89e-05 −7.73e-03 −7.38e-03 <2.2e-16 −84.95
DistT −2.37e-04 5.67e-06 −2.48e-04 −2.26e-04 <2.2e-16 −41.87
bs(x)1 −32.68 2.481 −37.55 −27.82 <2.2e-16 −13.17
bs(x)2 −26.59 1.857 −30.24 −22.95 <2.2e-16 −14.31
bs(x)3 −30.81 1.963 −34.66 −26.96 <2.2e-16 −15.69
bs(x)4 −30.23 1.901 −33.96 −26.50 <2.2e-16 −15.90
bs(x)5 −35.52 1.915 −39.27 −31.76 <2.2e-16 −18.54
bs(x)6 −32.91 1.912 −36.65 −29.16 <2.2e-16 −17.21
bs(x)7 −33.59 1.913 −37.34 −29.84 <2.2e-16 −17.55
bs(x)8 −34.42 1.911 −38.17 −30.68 <2.2e-16 −18.01
bs(x)9 −33.74 1.914 −37.49 −29.99 <2.2e-16 −17.62
bs(x)10 −31.79 1.911 −35.53 −28.04 <2.2e-16 −16.63
bs(x)11 −32.43 1.944 −36.25 −28.62 <2.2e-16 −16.67
bs(x)12 −27.19 2.080 −31.26 −23.11 <2.2e-16 −13.07
bs(y)1 4.118 1.279 1.610 6.626 <2.2e-03 3.218
bs(y)2 2.273 1.090 0.136 4.410 <3.8e-02 2.085
bs(y)3 2.780 1.154 0.517 5.043 <2.2e-02 2.408
bs(y)4 2.511 1.122 0.311 4.711 <2.6e-02 2.237
bs(y)5 3.782 1.127 1.572 5.992 <2.2e-04 3.354
bs(y)6 3.235 1.125 1.030 5.441 <2.2e-03 2.875
bs(y)7 2.930 1.127 0.719 5.140 <2.2e-03 2.598
bs(y)8 3.961 1.127 1.752 6.170 <2.2e-04 3.514
bs(y)9 3.691 1.151 1.434 5.949 <2.2e-03 3.204
bs(y)10 6.538 1.170 4.245 8.832 <2.2e-07 5.587
bs(y)11 6.539 1.189 4.208 8.870 <2.2e-07 5.498
bs(y)12 21.86 1.386 19.14 24.58 <2.2e-16 15.77

quence of models 1, 2, 5, 6, 8, 10 is nested, and so is the subsequence 1, 3, 4, 10. Table A4 gives
a sequence of LRT’s (an analysis of deviance) for the first subsequence, comparing each model with
its immediate predecessor, and Table A3 does the same for the second subsequence. The columns in
these tables are: The number of parameters in each model, the change in the number of parameters
(Df), the change in the deviance (Deviance), and the p-value of the χ2 test. From these tables one can
conclude that Model 10 is the best of the models in Table 2.

4. Conclusion

The model 10 (in Table 3) states that the intensity of traffic accidents declines by 0.9733 with
existence of a bike lane. Here is another interesting output from the model is that when speed limit
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increases by 1 miles on a road, intensity of the accidents decrease by 0.9794. We believe this might
be because when people start getting faster, they become more careful. One can possible claim that
number of lanes increase, intensity of accident also increase. Table 3 supports that claim, when
number of lane increase by 1, accident intensity increases by 1.086.

Log-linear Poisson model is useful and easy to fit. Since it uses a generalized linear model (GLM)
idea, it is straightforward to interpret. Same time, the model is vulnerable to over-fitting. However,
in our models, the danger of over-fitting is minimal because we are using only a few covariates and
not trying many transformations or including high-order interactions. So long as we use a strict
criterion like BIC (in Table A2), we are not worried about over-fitting. We can consider adding more
complicated terms like interactions to our models so long as they decrease the BIC. AIC is a less strict
criterion than BIC. The scope of this paper is limited to the main effects in order to compare intensity
estimation on a linear network with machine learning which we have been working on and going to
submit our initial result soon. Therefore, two-way or more way interactions are not considered. It can
be also a future work as well. Another development might be to use a thin plate spline or any other
spline instead of B-spline.

We more focus on spatial covariates to model our analysis but demographic and weather informa-
tion could be used in the model as well. Additionally, one can use other R packages or software to
accommodate temporal settings in the model since we couldn’t make it work with temporal covariates
with the current R-package we used to fit the model.
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Table A1: Number of equally spaced knots used in the model and the corresponding AIC values
1 2 3 4 5 6 7 8 9 10

1 323061.1 323006.5 322905.3 322579.5 322715.5 322528.4 322531.5 322564.3 322433.1 322451.5
2 323014.9 322960.3 322855.9 322523.1 322660.6 322471.1 322475.7 322508.7 322376.9 322395.4
3 322126.8 322072.3 321901.4 321365.7 321571.8 321275.3 321294.0 321307.2 321192.4 321229.9
4 322385.0 322330.6 322139.3 321691.0 321868.5 321608.9 321634.4 321647.8 321520.9 321557.9
5 321514.7 321460.5 321269.9 320696.1 320913.3 320583.6 320629.1 320614.9 320498.3 320556.5
6 321593.4 321539.4 321339.0 320782.8 321000.7 320670.7 320711.2 320691.6 320576.1 320633.4
7 321267.6 321213.7 321004.4 320412.1 320626.0 320310.8 320352.7 320336.0 320239.1 320291.5
8 321367.4 321313.7 321116.5 320519.6 320744.1 320407.5 320447.8 320428.8 320325.9 320381.1
9 321158.6 321104.7 320888.4 320292.7 320503.4 320201.3 320236.8 320226.2 320132.5 320178.2
10 321215.31 321161.5 320954.9 320355.5 320572.6 320261.8 320291.4 320284.1 320188.7 320234.2

The row and column labels are the number of knots for x and y, respectively.

Table A2: Number of equally spaced knots used in the model and the corresponding BIC values
1 2 3 4 5 6 7 8 9 10

1 323277.1 323231.5 323139.2 322822.5 322967.4 322789.3 322801.4 322843.2 322721.0 322748.5
2 323239.9 323194.3 323098.9 322775.1 322921.6 322741.0 322754.6 322796.7 322673.9 322701.4
3 322360.8 322315.3 322153.4 321626.6 321841.8 321554.2 321581.9 321604.1 321498.3 321544.9
4 322627.9 322582.6 322400.3 321960.9 322147.4 321896.8 321931.3 321953.8 321835.8 321881.9
5 321766.6 321721.5 321539.8 320975.0 321201.2 320880.6 320934.9 320929.9 320822.3 320889.4
6 321854.4 321809.4 321617.9 321070.7 321297.7 320976.6 321026.1 321015.5 320909.1 320975.3
7 321537.5 321492.6 321292.4 320709.1 320931.9 320625.8 320676.7 320668.9 320581.0 320642.5
8 321646.4 321601.6 321413.4 320825.6 321059.1 320731.5 320780.7 320770.8 320676.9 320741.0
9 321446.5 321401.6 321194.4 320607.6 320827.3 320534.2 320578.7 320577.1 320492.4 320547.1
10 321512.3 321467.4 321269.8 320679.5 320905.6 320603.8 320642.3 320644.0 320557.7 320612.1

The row and column labels are the number of knots for x and y, respectively.

Table A3: Analysis of deviance for a subsequence of nested models from Table 2

Model Number of Param Df Deviance p-value
1 1
2 2 1 18339 < 2.2e-16
5 6 4 55903 < 2.2e-16
6 14 8 3636 < 2.2e-16
8 16 2 24228 < 2.2e-16

10 40 24 5670 < 2.2e-16

Table A4: Analysis of deviance for another nested subsequence of models from Table 2

Model Number of Param Df Deviance p-value
1 1
3 25 24 72572 < 2.2e-16
4 27 2 20174 < 2.2e-16

10 40 13 15031 < 2.2e-16
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