Browse > Article
http://dx.doi.org/10.12989/was.2022.35.1.035

A comparative study of the models to predict aeroelastic vibrations of circular cylinder and chimneys  

Rahman, Saba (Department of Civil Engineering, Indian Institute of Technology (IIT))
Jain, Arvind K. (Department of Civil Engineering, Indian Institute of Technology (IIT))
Bharti, S.D. (Department of Civil Engineering, Malaviya National Institute of Technology (MNIT))
Datta, T.K. (Department of Civil Engineering, Malaviya National Institute of Technology (MNIT))
Publication Information
Wind and Structures / v.35, no.1, 2022 , pp. 35-54 More about this Journal
Abstract
A comparative study of aeroelastic vibrations of spring-mass cylinder and chimneys, with the help of a few wake oscillator models available in the literature, is presented. The models include those proposed by Facchinetti, Farshidian and Dolatabadi method-I, Farshidian and Dolatabadi method-II, de Langre, Skop and Griffin. Besides, the linear model proposed by Simiu and Scanlan is also incorporated in the study. For chimneys, the first mode oscillation is considered, and the top displacements of the chimneys are evaluated using the considered models. The results of the analytical model are compared with those obtained from the numerical solution of the wake-oscillator coupled equations. The response behavior of the cylinder and three chimneys of different heights are studied and compared with respect to critical parametric variations. The results of the study indicate that the numerical analysis is essential to capture the effect of non-linear aeroelastic phenomena in the solutions, especially for small damping. Further, except for the models proposed by Farshidian and Dolatabadi, other models predict nearly the same responses. The non-linear model predicts a much higher response as compared to the linear model.
Keywords
numerical analysis; non-linear analysis; Van der Pol oscillator; wake-oscillator models;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, J. and Li, Q.S. (2019), "Nonlinear dynamics of a fluidstructure coupling model for vortex-induced vibration", Int. J. Struct. Stab. Dyn., 19(12), 1-20. https://doi.org/10.1142/S0219455419500718.   DOI
2 EN 1991-1-4 (2005), Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions, European Committee for Standardization; Brussels, Belgium.
3 Gabbai, R.D. and Benaroya, H. (2005), "An overview of modeling and experiments of vortex-induced vibration of circular cylinders", J. Sound Vib., 282, 575-616. https://doi.org/10.1016/j.jsv.2004.04.017.   DOI
4 Govardhan, R., and Williamson, C.H.K. (2000), "Modes of vortex formation and frequency responseof a freely vibrating cylinder", J. Fluids Mech., 420, 85-130. https://doi.org/10.1017/S0022112000001233.   DOI
5 Iwan, W.D. and Jones, N.P. (1987), "On the vortex-induced oscillation of long structural elements", J. Energy Resour. Technol. Trans. ASME., 109(4), 161-167. https://doi.org/10.1115/1.3231342.   DOI
6 Krenk, S. and Nielsen, S.R.K. (1999), "Energy balanced double oscillator model for vortex-induced vibrations", J. Eng. Mech., 125(3), 263-271. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(263).   DOI
7 Nayfeh, A.H. (2011), Introduction to Perturbation Techniques, John Wiley and Sons, Hoboken, NJ, USA.
8 Rahman, S., Jain, A.K., Bharti, S.D. and Datta, T.K. (2020), "Journal of Wind Engineering and Industrial Aerodynamics Comparison of international wind codes for across wind response of concrete chimneys", J. Wind Eng. Ind. Aerodyn., 207(3), 104401. https://doi.org/10.1016/j.jweia.2020.104401.   DOI
9 Sarpkaya, T. (1979), "Vortex-induced oscillations", J. Appl. Mech., 46(2), 241-258.   DOI
10 Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluids Struct., 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005.   DOI
11 Khalak, A. and Williamson, C.H.K. (1999), "Motions, forces and mode transitions", J. Fluids Struct., 13, 813-851. https://doi.org/10.1006/jfls.1999.0236.   DOI
12 Gao, X.F., Xie, W. de, Xu, W.H., Bai, Y.C. and Zhu, H.T. (2018), "A novel wake oscillator model for vortex-induced vibrations prediction of a cylinder considering the influence of reynolds number", China Ocean Eng., 32(3-5), 132-143. https://doi.org/10.1007/s13344-018-0015.   DOI
13 Griffin, M.O. (1980), "Vortex-excited cross-flow vibrations of a single cylindrical tube", J. Press. Vessel Technol., 102(25), 158-166. https://doi.org/10.1115/1.3263315.   DOI
14 Hartlen, R.T. and Currie, I.G. (1970), "Lift-oscillator model of vortex-induced vibration", J. Eng. Mech. Div., 96(4), 577-591. https://doi.org/10.1061/JMCEA3.0001276.   DOI
15 King, R. (1977), "Vortex excited oscillations of yawed circular cylinders", J. Fluids Eng. Trans. ASME, 99(3), 495-501. https://doi.org/10.1115/1.3448825.   DOI
16 Kurushina, V., Pavlovskaia, E., Postnikov, A. and Wiercigroch, M. (2009), "Calibration and comparison of VIV wake oscillator models for low mass ratio structures", Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, United Kingdom.
17 Lupi, F., Niemann, H.J. and Hoffer, R. (2018), "Aerodynamic damping model in vortex-induced vibrations for wind engineering applications", J. Wind Eng. Ind. Aerodyn., 174(5), 281-295. https://doi.org/10.1016/j.jweia.2018.01.006.   DOI
18 Ruscheweyh, H. and Galemann, T. (1996), "Full-scale measurements of wind-induced oscillations of chimneys", J. Wind Eng. Ind. Aerodyn., 65(1), 55-62. https://doi.org/10.1016/S0167-6105(97)00022-6.   DOI
19 Ogink, R.H.M. and Metrikine, A.V. (2010), "A wake oscillator with frequency dependent coupling for the modeling of vortexinduced vibration", J. Sound Vib., 329(26), 5452-5473. https://doi.org/10.1016/j.jsv.2010.07.008.   DOI
20 Qu, Y. and Metrikine, A.V. (2020), "A single van der pol wake oscillator model for coupled cross-flow and in-line vortexinduced vibrations", Ocean Eng., 196(10), 106732. https://doi.org/10.1016/j.oceaneng.2019.106732.   DOI
21 Sarpkaya, T. (1978), "Fluid forces on oscillating cylinders", J. Waterw. Port, Coast. Ocean Div., 104(3), 275-290.   DOI
22 Sarpkaya, T. (1993), "Coherent structures in oscillatory boundary layers", J. Fluid Mech., 253(4), 105-140. https://doi.org/10.1017/S0022112093001739.   DOI
23 Sarpkaya, T. (1995), "Turbulent vortex breakdown", Phys. Fluids., 7(10), 2301-2303. https://doi.org/10.1063/1.868742.   DOI
24 Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, John Wiley and Sons, Hoboken, NJ, USA.
25 Skop, R.A. and Griffin, O.M. (1973), "A model for the vortexexcited resonant response of bluff cylinders", J. Sound Vib., 27(2), 225-233. https://doi.org/10.1016/0022-460X(73)90063-1.   DOI
26 Skop, R.A. and Griffin, O.M. (1975), "On a theory for the vortexexcited oscillations of flexible cylindrical structures", J. Sound Vib., 41(12), 263-274.   DOI
27 Zdravkovich, M.M. (1996), "Different modes of vortex shedding: An overview", J. Fluids Struct., 32(2), 427-437. https://doi.org/10.1006/jfls.1996.0029.   DOI
28 Srinil, N. and Zanganeh, H. (2012), "Modelling of coupled crossflow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators", Ocean Eng., 53(7), 83-97. https://doi.org/10.1016/j.oceaneng.2012.06.025.   DOI
29 Skop, R.A. and Balasubramanian, S. (1997), "A new twist on an old model for vortex-excited vibrations", J. Fluids Struct., 11(4), 395-412. https://doi.org/10.1006/jfls.1997.0085.   DOI
30 Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and non-uniform flow", J. Fluids Struct., 15(23), 575-585. https://doi.org/10.1006/j.   DOI
31 Vandiver, J.K. (2012), "Damping Parameters for flow-induced vibration", J. Fluids Struct., 35(8), 105-119. https://doi.org/10.1016/j.jfluidstructs.2012.07.002.   DOI
32 Vigneshvar, V., Vishwanth, S.R., Venkateshwaran, S. and Balaram, B. (2019), "A comparative study of wake oscillator models for flow induced vibrations", AIP Conference Proceedings, Thiruvananthapuram, August.
33 Violette, R., de Langre, E. and Szydlowski, J. (2010), "A linear stability approach to vortex-induced vibrations and waves", J. Fluids Struct., 26(3), 442-466. https://doi.org/10.1016/j.jfluidstructs.2010.01.002.   DOI
34 Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct., 2(2), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8.   DOI
35 Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128.   DOI
36 Brankovic, M. and Bearman, P.W. (2006), "Measurements of transverse forces on circular cylinders undergoing vortexinduced vibration", J. Fluids Struct., 22(14), 829-836. https://doi.org/10.1016/j.jfluidstructs.2006.04.022.   DOI
37 Xu, W.H., Wu, Y.X., Zeng, X.H., Zhong, X.F. and Yu, J.X. (2010), "A new wake oscillator model for predicting vortex induced vibration of a circular cylinder", J. Hydrodyn., 22(17), 381-386. https://doi.org/10.1016/S1001-6058(09)60068-8.   DOI
38 Balasubramanian, S., Haan, F.L., Szewczyk, A.A. and Skop, R.A. (1998), "On the existence of a critical shear parameter for cellular vortex shedding from cylinders in nonuniform flow", J. Fluids Struct., 12(4), 3-15. https://doi.org/10.1006/jfls.1997.0122.   DOI
39 Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder oscillating in a flowing fluid", Proceedings of the Royal Society: Mathematical, Physical and Engineering Sciences, London, October.
40 de Langre, E. (2006), "Frequency lock-in is caused by coupledmode flutter", J. Fluids Struct., 22(6), 783-791. https://doi.org/10.1016/j.jfluidstructs.2006.04.008.   DOI
41 Ellingen, O. (2021), "Vortex-induced vibrations on industrial chimneys", Ph.D. Dissertation, Institute of Polytechnique, Paris. https://tel.archives-ouvertes.fr/tel-03483512v2.
42 Farshidianfar, A. and Dolatabadi, N. (2013), "Modified higherorder wake oscillator model for vortex-induced vibration of circular cylinders", Acta Mech., 224(7), 1441-1456. https://doi.org/10.1007/s00707-013-0819-0.   DOI
43 Farshidianfar, A. and Zanganeh, H. (2010), "A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio", J. Fluids Struct., 26(3), 430-441. https://doi.org/10.1016/j.jfluidstructs.2009.11.005.   DOI
44 Gao, X.F., Xie, W. de, Xu, W.H., Bai, Y.C. and Zhu, H.T. (2001), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluids Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004.   DOI