• Title/Summary/Keyword: Linear Discriminant

Search Result 393, Processing Time 0.023 seconds

Improvement effect of cooked soybeans on HFD-deteriorated large intestinal health in rat model (쥐 모델에서 고지방사료로 악화된 대장 건강에 대한 콩의 개선 효과)

  • Choi, Jae Ho;Shin, Taekyun;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.383-389
    • /
    • 2021
  • Obesity is associated with impaired intestinal epithelial barrier function, which contribute to host systemic inflammation and metabolic dysfunction. Korean traditional foods, fiber-rich bean products, have been various biological activities in anti-inflammatory responses, but has not reported the large intestinal health. In this study, we investigated the intestinal health promoting effect of cooked soybeans (CSB) on high fat diet (HFD)-induced obesity model. SD rat were fed either a HFD or HFD supplemented with 10.6% CSB (HFD+CSB) for animal experimental period. CSB treatment significantly decreased the HFD-induced weights of body and fat. Also, CSB treatment improved HFD-reduced tight junction components (ZO-1, Claudin-1, and Occludin-1) mRNA expression in large intestine tissue. Additionally, histopathological evaluation showed that CSB treatment attenuated the HFD-increased inflammatory cells infiltration and epithelial damages in large intestine tissue. At the genus level, effects of CSB supplement not yet clear, while dietary effects showed differential abundance of several genera including Lactobacillus, Duncaniella, and Alloprevotella. NMDS analysis showed significant microbial shifts by HFD, while CSB did not shift gut microbiota. CSB increased the abundance of the genera Anaerotignum, Enterococcus, Clostridium sensu stricto, and Escherichia/Shigella by linear discriminant analysis effect size analysis, while reduced the abundance of Longicatena and Ligilactobacillus. These findings indicate that CSB supplement improves HFD-deteriorated large intestinal health by the amelioration of tight junction component, while CSB did not shift gut microbiotas.

Improving Non-Profiled Side-Channel Analysis Using Auto-Encoder Based Noise Reduction Preprocessing (비프로파일링 기반 전력 분석의 성능 향상을 위한 오토인코더 기반 잡음 제거 기술)

  • Kwon, Donggeun;Jin, Sunghyun;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.491-501
    • /
    • 2019
  • In side-channel analysis, which exploit physical leakage from a cryptographic device, deep learning based attack has been significantly interested in recent years. However, most of the state-of-the-art methods have been focused on classifying side-channel information in a profiled scenario where attackers can obtain label of training data. In this paper, we propose a new method based on deep learning to improve non-profiling side-channel attack such as Differential Power Analysis and Correlation Power Analysis. The proposed method is a signal preprocessing technique that reduces the noise in a trace by modifying Auto-Encoder framework to the context of side-channel analysis. Previous work on Denoising Auto-Encoder was trained through randomly added noise by an attacker. In this paper, the proposed model trains Auto-Encoder through the noise from real data using the noise-reduced-label. Also, the proposed method permits to perform non-profiled attack by training only a single neural network. We validate the performance of the noise reduction of the proposed method on real traces collected from ChipWhisperer board. We demonstrate that the proposed method outperforms classic preprocessing methods such as Principal Component Analysis and Linear Discriminant Analysis.

Comparative Microbiome Analysis of and Microbial Biomarker Discovery in Two Different Fermented Soy Products, Doenjang and Ganjang, Using Next-generation Sequencing (차세대 염기서열 분석법을 이용한 된장과 간장의 미생물 분포 및 바이오마커 분석)

  • Ha, Gwangsu;Jeong, Ho Jin;Noh, Yunjeong;Kim, JinWon;Jeong, Su-Ji;Jeong, Do-Youn;Yan, Hee-Jong
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.803-811
    • /
    • 2022
  • Despite the importance of traditional Korean fermented foods, little is known about the microbial communities and diversity of fermented soy products. To gain insight into the unexplored microbial communities of both Doenjang (DJ) and Ganjang (GJ) that may contribute to the fermentation in Korean traditional foods, we carried out next-generation sequencing (NGS) based on the V3-V4 region of 16S rDNA gene analysis. The alpha diversity analysis results revealed that both the Shannon and Simpson diversity indices were significantly different between the two groups, whereas the richness indices, including ACE, CHAO, and Jackknife, were not significant. Firmicutes were the most dominant phylum in both groups, but several taxa were found to be more abundant in DJ than in GJ. The proportions of Bacillus, Kroppenstedtia, Clostridium, and Pseudomonas and most halophiles and halotolerant bacteria, such as Tetragenococcus, Chromohalobacter, Lentibacillus, and Psychrobacter, were lower in DJ than in GJ. Linear discriminant effect size (LEfSe) analysis was carried out to discover discriminative functional biomarkers. Biomarker discovery results showed that Bacillus and Tetragenococcus were identified as the most important features for the classification of subjects to DJ and GJ. Paired-permutational multivariate analysis of variance (PERMANOVA) further revealed that the bacterial community structure between the two groups was statistically different (p=0.001).

Comparison of Fecal Microbiota between Birth and Weaning of Halla Horses Using 16S rRNA Gene Amplicon Sequencing (16S 앰플리콘 시퀀싱 기반 한라마 출생시와 이유기의 분변 미생물 비교 분석)

  • Lee, Jongan;Kang, Young-Jun;Choi, Jae-Young;Shin, Sang-Min;Shin, Moon-Cheol
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.1005-1012
    • /
    • 2022
  • This study was conducted to investigate the taxonomic composition and diversity of fecal microbiota between birth and weaning stages of Halla horses using 16S rRNA gene amplicon sequencing analysis. Proteobacteria (35.7%) and Firmicutes (45.6%) were identified as the most common phylum in birth and weaning, respectively. Escherichia (19.7%) and Clostridium (14.0%) were observed as the most dominant genus in birth, and Fibrobacter (6.6%) was the highest in weaning. The results of α-diversity showed that the richness and evenness in microbial communities were statistically significant (p<0.001) in birth and weaning. The results of β-diversity indicated that the birth and weaning stages were clearly divided into two groups at the genus and species levels. Permutational multivariate analysis of variance (PERMANOVA) showed that the microbiota composition differences between birth and weaning were statistically significant (q<0.001). A linear discriminant analysis effect (LEfSe) was performed to select taxonomic makers between the birth and weaning stages. On the genus level, Escherichia, Bacteroides, Clostridium, and Methylobacterium were relatively abundant at birth, whereas Fibrobacter was more abundant at weaning. We expect that this research can be utilized as basic data in the identification of microbial communities involved in disease prevention and nutrient absorption in Halla horses.

Analysis of the Distribution and Diversity of the Microbial Community in Kimchi Samples from Central and Southern Regions in Korea Using Next-generation Sequencing (차세대 염기서열 분석법을 이용한 우리나라 중부지방과 남부지방의 김치 미생물 군집의 분포 및 다양성 분석)

  • Yunjeong Noh;Gwangsu Ha;Jinwon Kim;Soo-Young Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • The fermentation process of kimchi, which is a traditional Korean food, influences the resulting compo- sition of microorganisms, such as the genera Leuconostoc, Weissella, and Lactobacillus. In addition, several factors, including the type of kimchi, fermentation conditions, materials, and ingredients, can influence the distribution of the kimchi microbial community. In this study, next-generation sequencing (NGS) of kimchi samples obtained from central (Gangwon-do and Gyeonggi-do) and southern (Jeolla-do and Gyeongsang-do) regions in Korea was performed, and the microbial communities in samples from the two regions were compared. Good's coverage prediction for all samples was higher than 99%, indicating that there was sufficient reliability for comparative analysis. However, in a α -diversity analysis, there was no significant difference in species richness and diversity between samples. The Firmicutes phylum was common in both regions. At the species level, Weissella kandleri dominated in central (46.5%) and southern (30.8%) regions. Linear discriminant analysis effect size (LEfSe) analysis was performed to identify biomarkers representing the microbial community in each region. The LEfSe results pointed to statistically significant differences between the two regions in community composition, with Leuconostocaceae (71.4%) dominating in the central region and Lactobacillaceae (61.0%) dominating in the southern region. Based on these results, it can be concluded that the microbial communities of kimchi are significantly influenced by regional properties and that it can provide more useful scientific data to study the relationship between regional characteristics of kimchi and their microbial distribution.

Comparative Physicochemical Characteristics and Microbial Communities in Commercial Kimchi and Mukeunji Products (국내 시판 김치와 묵은지의 이화학적 특성 및 미생물 군집 구조 비교)

  • Soo-Young Lee;Su-Ji Jeong;Myeong Seon Ryu;Gwangsu Ha;Yunjeong Noh;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.325-333
    • /
    • 2023
  • This study compared and analyzed the microbial composition and physicochemical characteristics of kimchi (gimjang kimchi) and mukeunji (aged kimchi). Commercial kimchi and mukeunji products were purchased through an online market. After an analysis of physicochemical characteristics, the pH of the mukeunji samples was found to be lower and the acidity higher than in the kimchi samples. There was no significant difference in salinity between kimchi and mukeunji, but the sugar content was higher in the kimchi samples. The phylogenetic diversity index, which incorporates phylogenetic difference between species, was significantly higher in mukeunji than in the kimchi. The most dominant order in both groups was Lactobacillales, but several lactic acid bacteria, such as the Pediococcus and Lactobacillus species, which may be more acid tolerant or more competitive, are relatively predominant in mukeunji. Beta set-significance analysis based on two different distance metric results revealed that microbial distributions of population were different at the statistical confidence level (p<0.001). We investigated the effect of respective species on total microbial community using the LEfSe (linear discriminant analysis effect size) mechanism. According to the results of LEfSe testing, a relatively higher abundance of Weissella kandleri in kimchi and a higher abundance of Pediococcus inopinatus in mukeunji have the greatest influence on the differences in microbial structure between the two groups.

Diversity and Succession of the Bacterial Community during the Initial Fermentation Period in Modernized Soy Sauce (Ganjang) (개량식 간장의 발효 초기 단계에서의 미생물 다양성 및 천이에 관한 연구)

  • Ho Jin Jeong;Gwangsu Ha;Jungmi Lee;Yeji Song;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2023
  • The taste and quality of soy sauce, a fermented liquid condiment, is greatly influenced by microbial metabolism during fermentation. To investigate the microbiological characteristics of ganjang during the initial fermentation process, we prepared meju (fermented soybean) blocks fermented with starter cultures and solar salts and analyzed the microbial community quantitively using 16S rRNA gene profiling from ganjang that had been fermented over a five-week period. The ganjang samples were collected and analyzed after soaking for week one (1W), three (3W), and five (5W) weeks. We found that Halomonadaceae was significantly higher in the 1W group (89.83%) than the 3W and 5W groups (14.46%, and 13.78%, respectively). At a species level, Chromohalobacter beijerinckii and Chromohalobacter canadensis were the dominant species in the 1W group but several taxa such as Bacillus subtilis, Pediococcus acidilactici, and Enterococcus faecalis were more abundant in the 3W and 5W groups. Pearson correlation analysis of the relative abundance of the bacteria showed a negative correlation between Chromohalobacter and two bacterial genera Bacillus and Enterococcus. Beta-diversity showed a statistical distinction between the 1W and the 3W and 5W groups, while no significance was evident between the 3W and 5W groups. Linear discriminant effect size analysis was used to identify biomarkers and significant differences in the relative abundance of several halophilic bacteria, Bacillus sp. and lactic acid bacteria at 1W, 3W, and 5W, recpectively, which indicates the important role of the bacterial community at these time points.

The oral microbiome of implant-abutment screw holes compared with the peri-implant sulcus and natural supragingival plaque in healthy individuals

  • MinKee Son;Yuri Song;Yeuni Yu;Si Yeong Kim;Jung-Bo Huh;Eun-Bin Bae;Won-Tak Cho;Hee Sam Na;Jin Chung
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.233-244
    • /
    • 2023
  • Purpose: An implant-supported prosthesis consists of an implant fixture, an abutment, an internal screw that connects the abutment to the implant fixture, and the upper prosthesis. Numerous studies have investigated the microorganisms present on the implant surface, surrounding tissues, and the subgingival microflora associated with peri-implantitis. However, there is limited information regarding the microbiome within the internal screw space. In this study, microbial samples were collected from the supragingival surfaces of natural teeth, the peri-implant sulcus, and the implant-abutment screw hole, in order to characterize the microbiome of the internal screw space in healthy subjects. Methods: Samples were obtained from the supragingival region of natural teeth, the peri-implant sulcus, and the implant screw hole in 20 healthy subjects. DNA was extracted, and the V3-V4 region of the 16S ribosomal RNA was sequenced for microbiome analysis. Alpha diversity, beta diversity, linear discriminant analysis effect size (LEfSe), and network analysis were employed to compare the characteristics of the microbiomes. Results: We observed significant differences in beta diversity among the samples. Upon analyzing the significant taxa using LEfSe, the microbial composition of the implant-abutment screw hole's microbiome was found to be similar to that of the other sampling sites' microbiomes. Moreover, the microbiome network analysis revealed a unique network complexity in samples obtained from the implant screw hole compared to those from the other sampling sites. Conclusions: The bacterial composition of the biofilm collected from the implant-abutment screw hole exhibited significant differences compared to the supra-structure of the implant. Therefore, long-term monitoring and management of not only the peri-implant tissue but also the implant screw are necessary.

Analysis of Microbial Community Change in Ganjang According to the Size of Meju (메주의 크기에 따른 간장의 미생물 군집 변화 양상 분석)

  • Ho Jin Jeong;Gwangsu Ha;Ranhee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.453-464
    • /
    • 2024
  • The fermentation of ganjang is known to be greatly influenced by the microbial communities derived from its primary ingredients, meju and sea salt. This study investigated the effects of changes in meju size on the distribution and correlation of microbial communities in ganjang fermentation, to enhance its fermentation process. Ganjang was prepared using whole meju and meju divided into thirds, and samples were collected at 7-day intervals over a period of 28 days for microbial community analysis based on 16S rRNA gene sequencing. At the genus level, during fermentation, ganjang made with whole meju exhibited a dominance of Chromohalobacter (day 7), Pediococcus (day 14), Bacillus (day 21), and Pediococcus (day 28), whereas ganjang made with meju divided into thirds consistently showed a Pediococcus predominance over the 28 days. Beta-diversity analysis of microbial communities in ganjang with different meju sizes revealed significant separation of microbial communities at fermentation days 7 and 14 but not at days 21 and 28 across all experimental groups. The linear discriminant analysis effect size (LEfSe) was determined to identify biomarkers contributing to microbial community differences at days 7 and 14, showing that on day 7, potentially halophilic microbes such as Gammaproteobacteria, Firmicutes, Oceanospirillales, Halomonadaceae, Bacilli, and Chromohalobacter were prominent, whereas on day 14, lactic acid bacteria such as Pediococcus acidilactici, Lactobacillaceae, Pediococcus, Bacilli, Leuconostocaceae, and Weissella were predominant. Furthermore, correlation analysis of microbial communities at the genus and species levels revealed differences in correlation patterns between meju sizes, suggesting that meju size may influence microbial interactions within ganjang.

Metagenomic Analysis of Jang Using Next-generation Sequencing: A ComparativeMicrobial Study of Korean Traditional Fermented Soybean Foods (차세대 염기서열 분석을 활용한 장류의 메타지놈 분석 : 한국 전통 콩 발효식품에 대한 미생물 비교 연구)

  • Ranhee Lee;Gwangsu Ha;Ho Jin Jeong;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.254-263
    • /
    • 2024
  • Korean jang is a food made using fermented soybeans, and the typical products include gochujang (GO), doenjang (DO), cheonggukjang (CH), and ganjang (GA). In this study, 16S rRNA metagenome analysis was performed on a total of 200 types of GO, DO, CH, and GA using next-generation sequencing to analyze the microbial community of fermented soybean foods and compare taxonomic (biomarker) differences. Alpha diversity analysis showed that in the CHAO index, the species richness index tended to be significantly higher compared to the DO and GA groups (p<0.001). The results of the microbial distribution analysis of the GO, DO, CH, and GA products showed that at the order level, Bacillales was the most abundant in the GO, DO, and CH groups, but Lactobacillales was most abundant in the GA group. Linear discriminant analysis effect (LEfSe) analysis was used to identify biomarkers at the family and species levels. Leuconostocaceae, Thermoactinomycetaceae, Bacillaceae, and Enterococcaceae appeared as biomarkers at the family level, and Bacillus subtilis, Kroppenstedtia sanguinis, Bacillus licheniformis, and Tetragenococcus halophilus appeared at the species level. Permutational multivariate analysis of variance (PERMANOVA) analysis showed that there was a significant difference in the microbial community structure of the GO, DO, CH, and GA groups (p=0.001), and the microbial community structure of the GA group showed the greatest difference. This study clarified the correlation between the characteristics of Korean fermented foods and microbial community distribution, enhancing knowledge of microorganisms participating in the fermentation process. These results could be leveraged to improve the quality of fermented soybean foods.