• Title/Summary/Keyword: Linear Dielectric Theory

Search Result 9, Processing Time 0.031 seconds

Analysis of a Crack in a Linear Electrostrictive Ceramic Subjected to Electric Fields (전기장을 받는 선형 전왜세라믹 내의 균열해석)

  • Beom, Hyeon-Gyu;Jeong, Gyeong-Mun;Gang, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.235-241
    • /
    • 2001
  • A crack with electrically conducting surfaces in a linear electrostrictive ceramic subjected to uniform electric fields is analyzed. Complete forms of electric fields and elastic fields for the crack are derived by using the complex function theory. The linear electromechanical theory predicts overlapping of the traction free crack surfaces. It is shown that the surfaces of the crack are contact near the crack tip. The contact zone size obtained on the basis of the linear dielectric theory for the conducting crack does not depend on the electric fields and depends on only the original crack and the material property for the linear electrostrictive ceramic.

Non-linear Dielectric properties of amorphous polymers(III) (무정형 고분자의 비선형 유전 특성(III))

  • Kang, D.H.;Park, S.H.;Yeo, H.C.;Lee, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1366-1368
    • /
    • 2001
  • In this study it can be confirmed that the formula by the free-rotational dipole theory is similiar with that by the phenomenological theory and the non-linear permittivity is determined only with the third harmonic conponent of polarization. Various parameters of VDCN copolymers were obtained from fitting results with the related formula.

  • PDF

Dseign of a Selectable Left and Right Handed Circular Polarizer (좌-우선회 원편파 상호 선택 변환 편파기 설계)

  • Yang, Doo-Yeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.254-262
    • /
    • 1996
  • In this paper, we present a polarizer that consists of three step rotary detents which can selectively convert linear polarzation into circular polarization and vice versa. For the design of the polarizer, the transmission line theory is applied to design the wa- veguide mode transducer for the modes to be smothly converted in waveguides, and a dielectric plate is inserted in circular waveguide for the conversion of a polarized wave with the angle of an inserted dielectric plate. Also, we simulated to obtain the optimum values of the transmission and the reflection coefficient characteristics at input and output port, and proved the propriety of the theory from the knowledge of measuring the constructed polarizer with the designed data.

  • PDF

SURFACE-WAVE PROPAGATION THROUGH A METAL GAP WITH THE DIELECTRIC CORE SUBDIVIDED INTO MULTIPLE THIN FILMS

  • Mok, Jin-Sik;Lee, Hyoung-In
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.315-327
    • /
    • 2007
  • Mathematical aspects of the electromagnetic surface-wave propagation are examined for the dielectric core consisting of multiple sub-layers, which are embedded in the gap between the two bounding cladding metals. For this purpose, the linear problem with a partial differential wave equation is formulated into a nonlinear eigenvalue problem. The resulting eigenvalue is found to exist only for a certain combination of the material densities and the number of the multiple sub-layers. The implications of several limiting cases are discussed in terms of electromagnetic characteristics.

Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions

  • Ghasemabadian, M.A.;Kadkhodayan, M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.271-299
    • /
    • 2016
  • In this article, based on the higher-order shear deformation plate theory, buckling analysis of a rectangular plate made of functionally graded piezoelectric materials and its effective parameters are investigated. Assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for the buckling analysis of an FGP rectangular plate are established. In addition to the Maxwell equation, all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. Considering double sine solution (Navier solution) for displacement field and electric potential, an analytical solution is obtained for full simply supported boundary conditions. The accurate buckling load of FGP plate is presented for both open and closed circuit conditions. It is found that the critical buckling load for open circuit is more than that of closed circuit in all loading conditions. Furthermore, it is observed that the influence of dielectric constants on the critical buckling load is more than those of others.

Study of Kinetics of Bromophenol Blue Fading in Alcohol-Water Binary Mixtures by SESMORTAC Model

  • Samiey, Babak;Alizadeh, Kamal;Mousavi, Mir Fazlolah;Alizadeh, Nader
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.384-392
    • /
    • 2005
  • Solvent effects on the kinetics of bromophenol blue fading have been investigated within a temperature range in binary mixtures of methanol, ethanol, 1-propanol, ethylene glycol and 1,2-propanediol with water of varying solvent compositions up to 40% by weight of organic solvent component. Correlation of logk with reciprocal of the dielectric constant was linear. Finally a mechanism was proposed for the bromophenol blue fading upon SESMORTAC (study of effect of solvent mixture on the one-step reaction rates using the transition state theory and cage effect) model, by means of this model, the fundamental rate constants of the fading reaction in these solvent systems were calculated.

Effect of High Pressure on Polarographic Parameters of Metal Complex Ion (金屬錯이온의 폴라로그래피的 파라미터에 미치는 壓力의 影響)

  • Heung Lark Lee;Zun Ung Bae;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.444-451
    • /
    • 1987
  • The dependence of polarographic parameters on the pressure for the reduction of copper(II), cadmium(II), and zinc(II) complex ions with ethylenediamine, propylenediamine, and diethylenetriamine has been studied. In this study the dropping mercury electrode, the mercury pool electrode, and helix type of platinum wire were used as the working, the reference, and the auxilary electrode, respectively. With increasing the pressure from 1 atmosphere to 1,500 atmospheres, the reduction half-wave potentials of metal complex ions are shifted to the negative values and the diffusion currents become considerably larger, in keeping with the theory on the change of the physical properties of the electrolytic solution such as the density, the viscosity, the dielectric constant, and the electrical conductance, etc. The slope values of the logarithmic plot are increased with increasing the pressure, which indicates the more irreversible reduction. The temperature coefficients of diffusion current observed over the range of the temperature from 25$^{\circ}$C to 35$^{\circ}$C are about two percentage with increasing the pressure, therefore the polarographic reduction under the high pressure is controlled by diffusion. The linear relationships between diffusion current and concentration of metal complex ions are established over all pressure range.

  • PDF

Phonon Scattering and Impact ionization for Silicon using Full Band Model at 77K (풀밴드 모델을 이용한 77K Si의 포논산란 및 임팩트이온화에 관한 연구)

  • 유창관;고석웅;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.552-554
    • /
    • 1999
  • Phonon scattering and impact ionization models have been presented to analyze hot carrier transport in high energy region, using full band model and Fermi's golden rule. We have investigated temperature dependent properties for impact ionization process of Si using realistic energy band structures at 77K and look. The realistic full band model, obtained from the empirical pseudopotential method with local from factors, is used to calculate scattering rate. The accurate calculation of impact ionization rate requires the use of a wavevector- and frequency-dependent dielectric function ξ ( q,$\omega$). The empirical phonon scattering rate P$\sub$ph/, is given by deriving from linear function for P$\sub$ph/ versus D(E) since the phonon scattering rate is linearly depended on density of states D(E). Impact ionization rate p,, is calculated from the first principle's theory. and fitted by modified Keldysh formula having power of above 2.

  • PDF

A Study on Properties of a Near-Field Microwave Microscope Using a Waveguide Resonator (도파관 공진기를 이용한 마이크로파 근접장 현미경의 특성에 관한 연구)

  • Kim, Hyun;Kim, Song-Hui;Kim, Joo-Young;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.16-24
    • /
    • 2008
  • Near-field scanning microwave microscope (NSMM) has been used to characterize the electromagnetic properties of samples based on a cavity perturbation technique. We used a NSMM using a waveguide cavity to couple a metallic probe tip as a point like evanescent field emitter. We explained the quality of our NSMM system by applying the cavity perturbation theory. First, to make a shape perturbation, we inserted linear and loop probes in the waveguide resonator. To check up electric and magnetic field distribution inside the waveguide resonator by shape perturbation, we confirmed the field distribution by using a HFSS simulation. Second, to make material perturbation, we located a dielectric sample in front of the probe tip and measured reflection coefficient $(S_{11})$. We found that the resonance frequency$(f_r)$ was changed linearly as the dielectric constant of resonator$({\varepsilon}_r)$ increased when ${\Delta}{\varepsilon}\;and\;{\Delta}{\mu}$ were small.