• Title/Summary/Keyword: Linear Array

Search Result 731, Processing Time 0.03 seconds

Analysis on the Helical Motion PM Motor with Cylindrical Halbach Array (원통형 Halbach 배열을 갖는 나선운동을 하는 2자유도 영구자석 전동기의 특성해석)

  • Jang Seok Myeong;Choi Jang Young;Lee Sung Ho;Seo Jeong Chul;Park Ji Hoon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1061-1063
    • /
    • 2004
  • This paper deals with the application of cylindrical Halbach array to a PM motor capable of producing pure rotary motion, pure linear motion, or helical motion, The proposed motor consists of an exterior polar Halbach array for a rotary motion and interior cylindrical Halbach array for a linear one. The two- dimensional space harmonic method is employed for predicting the electromagnetic characteristics, with reference to the following parameters as variables: magnetic field, torque/thrust and back emf.

  • PDF

Analysis on Dynamic Characteristics for Moving-Magnet Linear Oscillatory Actuator with Cylindrical Halbach Array (원통형 Halbach 배열 영구자석을 갖는 가동자석형 LOA의 동특성 해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.533-539
    • /
    • 2005
  • In the previous work, we performed the analysis of a tubular type moving-magnet linear oscillatory actuator (LOA) with cylindrical Halbach array by using 2-d analytical formulas and confirmed validity of analytical results by comparison of those with both finite element (FE) computation and experimental results. This paper deals with the dynamic characteristic analysis of the moving-magnet LOA with cylindrical Halbach array. Control parameters such as the thrust constant, the back-emf constant, resistance and inductance are obtained from both analytical and experimental results. And then, the dynamic simulation algorithm is established by the state and output equation obtained from voltage and motion equation. Finally, for various values of frequency, the dynamic simulation and experimental results for the characteristics of the voltage, current and displacement of moving-magnet LOA are presented. The simulation results are validated extensively by experiments. The experimental and simulation results for the variation of stroke according to control voltage are also presented for various values of frequency.

Symmetric Microwave Lens with Uniform Insertion Loss for Broad-band and Wide Beam Steering Coverage (균일한 삽입손실을 갖는 광대역 빔 조향용 대칭형 초고주파 렌즈)

  • 김인선;이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2002
  • In this paper, a symmetric microwave lens to steer wide angle and to operate at broad band frequency range for a linear phased array transmitter was designed. To get accurate beam steering performance far a linear phased array transmitter, uniform amplitude transmission characteristics of microwave lens was focused. The measured result for the insertion loss deviation between Input and output ports of microstrip lens with 8 beam ports and 8 array ports was $\pm$3.1 ㏈ over 6~18 ㎓ band, which was very uniform characteristics. Using 8 elements linear array antenna, it was confirmed the radiation beam could be steered over $\pm$60$^{\circ}$ in azimuth. And the measured lens performance data and multi-beam steering pattern were presented.

Efficient Performance Enhancement Scheme for Adaptive Antenna Arrays in a Rayleigh Fading and Multicell Environments

  • Kim Kyung-Seok;Ahn Bierng-Chearl;Choi Ik-Gueu
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.49-60
    • /
    • 2005
  • In this paper, an efficient performance enhancement scheme for an adaptive antenna array under the flat and the frequency-selective Rayleigh fadings is proposed. The proposed signal enhancement scheme is the modified linear signal estimator which combines the rank N approximation by reducing noise eigenvalues(RANE) and Toeplitz matrix approximation(TMA) methods into the linear signal estimator. The proposed performance enhancement scheme is performed by not only reducing the noise component from the signal-plus-noise subspace using RANE but also having the theoretical property of noise-free signal using TMA. Consequently, the key idea of the proposed performance enhancement scheme is to greatly enhance the performance of an adaptive antenna array by removing all undesired noise effects from the post-correlation received signal. The proposed performance enhancement scheme applies at the Wiener maximal ratio combining(MRC) method which has been widely used as the conventional adaptive antenna array. It is shown through several simulation results that the performance of an adaptive antenna array using the proposed signal enhancement scheme is much superior to that of a system using the conventional method under several environments, i.e., a flat Rayleigh fading, a fast frequency-selective Rayleigh fading, a perfect/imperfect power control, a single cell, and a multicell.

Characteristic Analysis of Tubular Type Linear Oscillating Actuator According to Permanent Magnet Array (영구자석 배열에 따른 Tubular형 직선 왕복 엑추에이터의 특성해석)

  • Jang, S.M.;Choi, J.Y.;Lee, S.H.;Cho, S.K.;Yoo, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1048-1050
    • /
    • 2003
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic con type loud speakers to stilting engine driven linear reciprocating alternators, compressors, textile machines etc. In this paper, we analyze the characteristics of tubular linear motor with Halbach and radial magnet array respectively. We already derived magnetic field solutions due to the PMs and to the currents and Motor thrust. On the basis of analytical field solutions, this paper deals with flux linkages and back emf. The results are validated extensively by comparison with finite element analyses. Then, this parer also presents thrust characteristics according to design parameters for each model.

  • PDF

Sweeping Linearization of Wavelength Swept Laser using PID Control (PID 제어를 이용한 파장 스위핑 레이저의 스위핑 선형화)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a PID control method for sweeping automatic linearization of a wavelength swept laser is proposed. First, the closedloop transfer function embodying the PID control is derived. Through the simulation of the function, Kp = 0.022, Ki = 0.008, Kd = 0.002 were obtained as the best PID coefficients for fast linear sweeping. The performance test using the PID coefficients showed that linear sweeping was held up well with a 98.7% decrement in nonlinearity after the 10th feedback, and 45 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The equipment consists of a fiber Bragg grating array, an optical-electronic conversion circuit, and a LabVIEW FPGA program. Every 5s, automatic feedback and PID control generate a new compensated waveform and produce a better linear sweeping than before. Compared with nonlinear sweeping, linear sweeping can reduce the cumbersome and time-consuming recalibration processes and produce more accurate measurement results.

Design of Antenna Array and Hybrid Receiver in Sidehaul System (사이드홀 시스템에서 안테나 배열 설계 및 하이브리드 수신기)

  • Moon, Sangmi;Choe, Hun;Chu, Myeonghun;Kim, Daejin;Kim, Cheol-Sung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.10-22
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed sidehaul system to cope with the explosively increasing mobile data traffic. The sidehaul system is based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak to average power ratio (PAPR). Also, antenna array is designed to support multiple input multiple output (MIMO) in a restricted space. In this paper, we design the antenna array about uniform linear array (ULA), uniform circular array (UCA) and uniform planar array (UPA), and analysis the performance in sidehaul system. In addition, we propose the novel hybrid receiver full suppression cancellation (FSC) to reduce the interference from neighbor cell in sidehaul system. The proposed receiver can suppress and cancel the interference by combining interference rejection combining (IRC) with successive interference cancellation (SIC).

Compuationally Efficient Propagator Method for DoA with Coprime Array (서로소 배열에서 프로퍼게이터 방법 기반의 효율적인 도래각 추정 기법)

  • Byun, Bu-Guen;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.258-264
    • /
    • 2016
  • In this paper, we propose a computationally efficient direction of arrival (DoA) estimation algorithm based on propagator method with non-uniform array. While the co-prime array techniques can improve the resolution of DoA, they generally lead to high computational complexity as the length of the coarray aperture. To reduce the complexity we use the propagator method that does not require singular value decomposition (SVD). Through simulations, we compare MUSIC with uniform lineary array, propagator method with uniform linear array, MUSIC with co-prime array, and the proposed scheme and observe that the performance of the proposed scheme is significantly better than MUSIC or propagator method with uniform linear array while it is slightly worse than computationally much more expensive co-prime array MUSIC scheme.

Performance analysis of sensor selection methods for beam steering direction of non-linear conformal array (비선형 곡면 배열 센서의 빔 지향 방위별 센서 선택 방법에 대한 성능 분석)

  • Kwon, Taek-ik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.391-399
    • /
    • 2021
  • The conformal array sensor has different sub-array depending on different beam steering directions. According to the method to effective the sensor, the performance of the conformal array sensor can be different, where the sub-array selects an effective sensor. Also, due to the figure of the conformal array sensor, the figure of the sub-array can be different each other, which results in different performance on directivity index, beam width and etc. In this paper, two methods to select sub-array which is the criteria for each sensors position vector and directive vector were proposed. For two sub-array selection methods, the performance of the directivity index, horizontal and vertical beam width were compared with the average and variance. In addition, this comparison was conducted when the number of sensors was fixed. When the number of sensors was not fixed, the directional vector method mainly results in high performance, but the performance of vertical beam width was lower or equal. When the number of sensors was fixed, the performance of two methods is similar, but the performance of variance was deteriorated.

GA-Enhanced Dual-Band Aperiodic Linear Dipole Array with Low Sidelobe Level (낮은 부엽 준위를 갖는 이중 대역 다이폴 배열 안테나)

  • Son, Trinh-Van;Kwon, Gina;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Kim, Dong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1296-1302
    • /
    • 2012
  • In this research, optimization of a dual-band dipole array was performed using genetic algorithm. A non-uniform, aperture-shared linear array was configured with dipoles which resonate at 4 GHz and 9.5 GHz. The excited current distributions on dipoles were computed considering mutual coupling between dipole elements. The current distributions were also computed using method of moment (MoM). The optimization using genetic algorithm was performed to obtain the low sidelobe levels in two operating frequency band. The PSLs of the optimized array for 4 GHz and 9.5 GHz are -15.7 dB and -17 dB, respectively. Comparison between computed and simulated results are also discussed.