• Title/Summary/Keyword: Linear Approximations

Search Result 117, Processing Time 0.036 seconds

A Study on Characteristics Analysis of Switched Reluctance Motor (스위치드 릴럭턴스 모터의 특성해석에 관한 연구)

  • 김영문
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.713-716
    • /
    • 2000
  • In this paper a simple theory is presented to represent characteristic of a SRM and theoretical results are compared with experimental ones. In the theory the inductance variation of a SRM are approximated as linear and winding resistance and the magnetic saturation are ignored. With these approximations we derived some equations expressing load characteristics of a SRM Also the torque ripple was removed by applying a variable hysteresis band control.

  • PDF

ON THE EXPONENTIAL APPROXIMATIONS IN EVALUATION OF FUNCTIONS

  • Yu, Dong-Won;Lee, Hyoung
    • Journal of applied mathematics & informatics
    • /
    • v.2 no.2
    • /
    • pp.13-20
    • /
    • 1995
  • The goal of this paper is to show that the linear approxi-mation in evaluation of functions may be effectively replaced by the ex-ponential approximation formulas obtained by numerical quadratures and in the instance the relative errors can be estimated without know-ing the true values.

An Approach to a Formal Linearization toy Time-variant Nonlinear Systems using Polynomial Approximations

  • Komatsu, Kazuo;Takata, Hitoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.2-52
    • /
    • 2002
  • In this paper we consider an approach to a formal linearization for time-variant nonlinear systems. A time-variant nonlinear sysetm is assumed to be described by a time-variant nonlinear differential equation. For this system, we introduce a coordinate transformation function which is composed of the Chebyshev polynomials. Using Chebyshev expansion to the state variable and Laguerre expansion to the time variable, the time-variant nonlinear sysetm is transformed into the time-variant linear one with respect to the above transformation function. As an application, we synthesize a time-variant nonlinear observer. Numerical experiments are included to demonstrate the validity of...

  • PDF

A DISCRETE FINITE ELEMENT GALERKIN METHOD FOR A UNIDIMENSIONAL SINGLE-PHASE STEFAN PROBLEM

  • Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.165-181
    • /
    • 2004
  • Based on Landau-type transformation, a Stefan problem with non-linear free boundary condition is transformed into a system consisting of parabolic equation and the ordinary differential equations. Semidiscrete approximations are constructed. Optimal orders of convergence of semidiscrete approximation in $L_2$, $H^1$ and $H^2$ normed spaces are derived.

SOLUTION OF THE BOUNDARY LAYER EQUATION FOR A MAGNETOHYDRODYNAMIC FLOW OF A PERFECTLY CONDUCTING FLUID

  • ZAKARIA, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.63-73
    • /
    • 2002
  • The influence of unsteady boundary layer magnetohydrodynamic flow with thermal relaxation of perfectly conducting fluid, past a semi-infinite plate, is considered. The governing non linear partial differential equations are solved using the method of successive approximations. This method is used to obtain the solution for the unsteady boundary layer magnetohydrodynamic flow in the special form when the free stream velocity exponentially depends on time. The effects of Alfven velocity $\alpha$ on the velocity is discussed, and illustrated graphically for the problem.

  • PDF

ERROR ESTIMATES FOR A SINGLE PHASE QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM

  • Ohm, Mi-Ray;Shin, Jun-Yong;Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.185-199
    • /
    • 2003
  • In this paper, we apply finite element Galerkin method to a single-phase quasi-linear Stefan problem with a forcing term. We consider the existence and uniqueness of a semidiscrete approximation and optimal error estimates in $L_2$, $L_{\infty}$, $H_1$ and $H_2$ norms for semidiscrete Galerkin approximations we derived.

One-sided best simultaneous $L_1$-approximation for a compact set

  • Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.127-140
    • /
    • 1998
  • In this paper, we discuss the characterizations and uniqueness of a one-sided best simultaneous approximation for a compact subset from a convex subset of a finite-dimensional subspace of a normed linear space $C_1(X)$. The motivation is furnished by the characterizations of the one-sided best simultaneous approximations for a finite subset ${f_1, \ldots, f_\ell}$ for any $\ell \in N$.

  • PDF

P-version Crack Model for Computation of Stress Intensity Factor of Cracked Panels Subjected to Membrane Forces (인장력을 받는 균열판의 응력확대계수 산정을 위한 p-version균열모델)

  • 윤영필;우광성;박병기;신영식
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.57-66
    • /
    • 1993
  • The p-version crack model based on integrals of Legendre polynomial and virtual crack extension method is proposed with its potential for application to stress intensity factor computations in linear elastic fracture mechanics. The main advantage of this model is that the data preparation effort is minimal because only a small number of elements are used and high accuracy and the rapid convergence can be achieved in the vicinity of crack tip. There are two important findings from this study. Firstly, the limit value, the strain energy of the exact solution, can be estimated with successive three p-version approximations by ascertaining that the approximations enter the asymptotic range. Secondly, the rate of convergence of p-version model is almost twice that of h-version model on the basis of uniform or quasiuniform mesh refinement for the cracked panel problem subjected to tension.

  • PDF

SMALL AMPLITUDE WAVE IN SHALLOW WATER OVER LINEAR AND QUADRATIC SLOPING BEDS

  • Bhatta, Dambaru D.;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.53-65
    • /
    • 2003
  • Here we present a study of small-amplitude, shallow water waves on sloping beds. The beds considered in this analysis are linear and quadratic in nature. First we start with stating the relevant governing equations and boundary conditions for the theory of water waves. Once the complete prescription of the water-wave problem is available based on some assumptions (like inviscid, irrotational flow), we normalize it by introducing a suitable set of non-dimensional variables and then we scale the variables with respect to the amplitude parameter. This helps us to characterize the various types of approximation. In the process, a summary of equations that represent different approximations of the water-wave problem is stated. All the relevant equations are presented in rectangular Cartesian coordinates. Then we derive the equations and boundary conditions for small-amplitude and shallow water waves. Two specific types of bed are considered for our calculations. One is a bed with constant slope and the other bed has a quadratic form of surface. These are solved by using separation of variables method.

Comparison of different post-processing techniques in real-time forecast skill improvement

  • Jabbari, Aida;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.150-150
    • /
    • 2018
  • The Numerical Weather Prediction (NWP) models provide information for weather forecasts. The highly nonlinear and complex interactions in the atmosphere are simplified in meteorological models through approximations and parameterization. Therefore, the simplifications may lead to biases and errors in model results. Although the models have improved over time, the biased outputs of these models are still a matter of concern in meteorological and hydrological studies. Thus, bias removal is an essential step prior to using outputs of atmospheric models. The main idea of statistical bias correction methods is to develop a statistical relationship between modeled and observed variables over the same historical period. The Model Output Statistics (MOS) would be desirable to better match the real time forecast data with observation records. Statistical post-processing methods relate model outputs to the observed values at the sites of interest. In this study three methods are used to remove the possible biases of the real-time outputs of the Weather Research and Forecast (WRF) model in Imjin basin (North and South Korea). The post-processing techniques include the Linear Regression (LR), Linear Scaling (LS) and Power Scaling (PS) methods. The MOS techniques used in this study include three main steps: preprocessing of the historical data in training set, development of the equations, and application of the equations for the validation set. The expected results show the accuracy improvement of the real-time forecast data before and after bias correction. The comparison of the different methods will clarify the best method for the purpose of the forecast skill enhancement in a real-time case study.

  • PDF