• 제목/요약/키워드: Line-to-ground

검색결과 1,460건 처리시간 0.027초

3상 배전계통의 고장조건에 따른 산화아연 피뢰기 소자의 누설전류 특성 (The characteristic of leakage current of ZnO block varistor according to fault conditions of three-phase four-wire distribution system)

  • 이복희;최휘성;강성만;박건영;이수봉;오성균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.174-177
    • /
    • 2003
  • Kinds of most frequent faults happened on overhead distribution system are the single line-to-ground fault, the line-to-line fault and the two line-to-ground fault. Occasionally, the three line-to-ground fault and the disconnection of a wire are happened in severe conditions. In this study, the single line-to-ground fault, the line-to-line fault, two line-to-ground fault on three-phase four-wire overhead distribution system were experimentally simulated and characteristics of total leakage current of distribution arrester caused by these faults were investigated. Also, the changing aspect of total leakage current of distribution arrester caused by voltage variation was investigated. In a consequence, abnormal voltages caused by voltage variation, the line-to-line fault, the two line-to-ground fault have a little effect on total leakage current of ZnO arrester. But abnormal voltages caused by the single line-to-ground fault have an important effect on total leakage current of ZnO arrester.

  • PDF

지면 평행 직선의 3차원 방향 추정에 의한 비전 기반 파렛트 측정 방법 (A Vision Based Pallet Measurement Method by Estimating 3D Direction of A Line Parallel to The Ground)

  • 김민환;변성민
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1229-1235
    • /
    • 2020
  • A line parallel to the ground is frequently shown in our daily life, which enables us to guess its direction. Especially, such a guess tends to become clear when a vanishing line of the ground is shown together. In this paper, a vision based pallet measurement method is suggested, which uses a technique for estimating three-dimensional direction of a line parallel to the ground. The technique computes actually a vector heading to intersection of a given imaged line parallel to the ground and the ground vanishing line determined previously on calibrating a measurement camera. Through an experiment of measuring a real commercial pallet with various orientation and distance, we found that the technique could measure the orientation of the pallet correctly and accurately. The technique worked well even though an edge line available on the front plane of a pallet was almost parallel to the ground vanishing line.

변압기의 선간 단락사고 보호를 위한 지락비율차동 계전 알고리즘의 성능향상 방법 (Improved Ground differential relaying algorithm for the protection of a line-to-line fault of transformer)

  • 강해권;김진호;김세창;박종수;박종은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.760-761
    • /
    • 2011
  • Ground differential relay is used to provide fast, sensitive, and selective protection for the wye connected and grounded electrical power equipment such as generators, power transformers, and grounding transformers. The ground differential protection only protects the ground faults within the protection zone, so that it can't protect the line-to-line fault. This paper proposes the algorithm to provide the protection for the line-to-line fault through the ground differential protection. The proposed algorithm detects the line-to-line fault of transformer using the comparison between the positive and the negative current, when the ground differential relay dose not operate. The performance of the algorithm is verified using a PSCAD/EMTDC simulator under various case studies.

  • PDF

22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석 (Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line)

  • 김점식;김도영;박용범
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석 (Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault)

  • 최혜원;최효상;정병익
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.

발전소 직류전선로의 지락안전진단 시스템에 관한 연구 (A Study on the Ground Fault Diagnosis System of Power Station DC Power line)

  • 안영주;김남호;이형기
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.37-43
    • /
    • 1997
  • There are two kinds of ground fault diagonosis system(GFD), which are for AC and DC power line. The ground fault current of a DC power line Is, first, analyzed for a description of a GFD system for DC power line and then the construction method of the GFD system, which could be processed and analyzed a ground fault current, are explained. Main functions of the system are that the detected ground fault current could be converted to the line insulation resistance by a program and saved in the system memory continuously. Finally a DC power line insulation safety could be decide by a change of the saved Insulation resistance for a given time. This system can detect the ground fault resistance to 100㏀.

  • PDF

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

전원 및 신호시스템에서의 뇌서지 전파양상 (Propagation Tendency of Lightning Surge in the Power and Communication System)

  • 이태형;조성철;엄주홍
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.245-249
    • /
    • 2007
  • The tendency of lightning surge to propagate displays the difference for applicable power and equipment. However, looking into the subject equipment with the lightning surge, the lightning surge can be divided in between the two lines of power, between the power line and the ground, the power line and the PE conductor, between the neutral line and the ground and the like. In addition, in the event of the communication equipment, there exists the case of lightning surge entered from the power line in addition to the entry between the communication lines, the communication line and the ground. In this study, the tendency of propagation of lightning surge penetrated on to the subject equipment is analyzed through the empirical experiment in accordance with the ground method by using the independent ground, common ground, bypass arrester and others among the techniques for safety improvement in power lines.

  • PDF

22.9[kV] 다중접지 배전계통에서 고장전류의 접지저항 영향 분석 (The Effect by Grounding Resistance of the ground Fault in the 22.9[kV] Multi-ground Distribution System)

  • 정금영;최선규;심건보;김경철
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.85-89
    • /
    • 2010
  • During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multi-grounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A effect by grounding resistance of poles of ground fault current in the 22.9[kV] multi-ground distribution system. by field tests.

축소모델을 이용한 22.9kV-Y 배전선로의 유도뢰 분석 (Analysis on Induced Lightning of a 22.9kV-Y Distribution Line Using a Reduced Model)

  • 김점식;김도영;박용범;권신원;길경석
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.434-439
    • /
    • 2010
  • This study fabricated a simulation facility which reduced the structure of a current distribution line to 50:1 in order to analyze the induced lightning shielding effect of a 22.9kV-Y distribution line according to ground resistance capacity, grounding locations, etc. When installing an overhead ground wire, the standard for grounding a distribution line with a current of 22.9kV-Y requires that ground resistance in common use with the neutral line be maintained less than $50\Omega$every 200m span. The reduced line for simulation had 7 electric poles and induced lightning was applied to the ground plane 2m apart from the line in a direction perpendicular to it using an impulse generator. If induced voltage occurred in the line and induced current flowed through the line due to the applied current, the induced voltage and current of the 'A' phase were measured respectively using an oscilloscope. When all 7 electric poles were grounded with a ground resistance of less than $50\Omega$ respectively, the combined resistance of the line was $7.4\Omega$. When an average current of 230A was applied, the average induced voltage and current measured were 1,052V and 13.8A, respectively. Under the same conditions, when the number of grounding locations was reduced, the combined resistance as well as induced voltage and current showed a tendency to increase. When all 7 electric poles were grounded with a ground resistance of less than $100\Omega$, the combined resistance of the line was $14.9\Omega$. When an average current of 236A was applied, the average induced voltage and current of the 'A' phase calculated were 1,068V and 15.6A, respectively. That is, in this case, only the combined resistance was greater than when all 7 electrical poles were grounded, and the induced voltage and current were reduced. Therefore, it is thought that even though ground resistance is slightly higher under a construction environment with the same conditions, it is advantageous to ground all electric poles to ensure system safety.