• 제목/요약/키워드: Line to ground voltage

검색결과 212건 처리시간 0.038초

Medium Voltage HTS Cable Thermal Simulation using PSCAD/EMTDC

  • Jung, Chaekyun;Kang, Yeonwoog;Kang, Jiwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.145-150
    • /
    • 2015
  • This paper described the medium voltage high temperature superconducting cable thermal simulation and its application. New simulation method for HTS cable modeling using PSCAD/EMTDC is introduced in this paper. The developed simulation method consists of electrical model part and thermal model part. In electrical model part, power loss and thermal capacitance can be calculated in each layer, then the temperature of each layer can be calculated by power loss and thermal capacitance in thermal model part. This paper also analyzes the electrical and thermal characteristic in the case of normal operating condition and transient including single line to ground fault and line to line ground fault using new simulation method.

대지구조에 따른 대지표면전위의 분석 (Analyses of Earth Surface Potentials Depending on Soil Structures)

  • 이복희;백영환;정현욱
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1796-1801
    • /
    • 2007
  • This paper presents electric potential rise on the surface of the earth due to ground currents. It is the aim of this paper to propose fundamental data relevant to the earth surface potentials depending on the soil structures. The earth potential rise, touch and step voltages in the immediate vicinity of the ground rod of a distribution pole were measured and analyzed. The results described in this paper are based on laboratory measurements which were intended to simulate conditions existing in actual installations. As a result, the earth surface potential rise, touch and step voltages strongly depend on the soil structure. The highest earth surface potential occurred in the vicinity of the top of ground rod. When the ground rod was installed in the distance range of $1{\sim}1.5\;m$ from distribution pole, the highest touch voltages appeared near the place of 1 m on the straight line connecting the distribution pole to ground rod.

3상 4선식 인터링킹 컨버터의 1선 지락 사고 발생 시 3D SVM 기법 (A New 3D SVM Method under Single-Line-to-Ground Fault in Three Phase Four Wire Interlinking Converter)

  • 안창균;최봉연;김미나;강경민;이훈;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.106-107
    • /
    • 2019
  • This paper propose a new 3D SVM method for three-phase four wire inverter for fault isolation at a single line ground fault. The available switching combination for isolation of a single line ground fault was analyzed. Using this method, voltage vector diagrams according to each switching combination were classified according to various ground fault situations, and 3D SVM method was performed by generating command for fault isolation. The proposed methods are mathematically analyzed and verified by PSIM simulation.

  • PDF

고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석 (An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System)

  • 정호성;신승권;김형철;박영;조상훈
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

전차선로에서의 뇌격에 의한 가공지선과 보안기의 차폐효과 (Effects of an Overhead Ground Wire and Surge Arrester in the Railway due to Lightning Strokes)

  • 임성정;김재철;창상훈;정용철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.93-99
    • /
    • 2000
  • Using the EMTP(Electro Magnetic Transient Program) for the analysis of lightning direct voltage on the railway system, the shielding effects of overhead grounding wire on the railway were studied quantitatively. Installation of overhead ground wire and gap-type arrester such as s-horn Provides a 6.6㎸ HV distribution line with good protection effects. Even severe lightning induced voltage were create, 6.6㎸ HV lines can be withstand.

  • PDF

도시철도 통합접지망에서의 위험전압에 따른 연접접지봉의 최적 분기간격에 관한 연구 (A Study on the Optimal Divergence Spacing of the Connecting Grounding Rod to the Dangerous Voltage in the Global Earthing Network of Urban Rail Transit)

  • 정호성;박영;김형철;김진희;김재문;조대훈
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1374-1379
    • /
    • 2012
  • Urban rail transit tends to global grounding system in order to control ground potential rise and potential differences between electric equipments. In addition, global grounding system can discharge the large capacity surge current to the ground safely. Since some railway electric equipments are installed all section of line, the global grounding system connected with the connecting grounding wire is more effectively. However, if the fault occurred in the connecting grounding wire area, some dangerous voltage is generated. So, the installation of additional grounding rod will be required. In this study, the global grounding system is simulated using CDEGS program to analyze the divergence spacing of additional ground rod depending on dangerous electric potential characteristics. Grounding net of the each station is modelled in depending on the size of the platform, and the spacing of the connecting grounding rod are compared 50m, 100m, 250m and 400m. Simulation results considering of earth resistivity and underground condition of the connecting grounding wire, spacing of the connecting grounding rod is that less than 250m to spacing of the ground rod was appropriately confirmed.

비접지 계통에서 영상전류 위상을 이용한 고장표시 생성 알고리즘 (A Fault Indicator Generation Algorithm using Phase Angle of Zero-Sequence Current in Ungrounded System)

  • 임희택;임일형;최면송;이승재
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1141-1149
    • /
    • 2008
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. This paper proposed to a FI(Fault Indicator) generation algorithm in ungrounded system. The algorithm just using line-to-line voltage and zero-sequence current detects fault line, fault phase, fault section and FI(Fault Indicator) at terminal device, This paper also proposed to application plan for this algorithm. In the case study, the proposed algorithm has been testified in demo system by Matlab/Simulink simulations.

UHF센서를 이용한 가스절연송전선로 절연파괴 위치 추정에 관한 연구 (A Study on Estimation of Breakdown Location using UHF Sensors for Gas Insulated Transmission Lines)

  • 박흥석;한상옥
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.805-810
    • /
    • 2011
  • This paper deals with the method and algorithm used to find fault locations in gas insulated transmission line. The method uses UHF sensors and digital oscilloscope to detect discharge signals emitted to the outside through insulating spacer in the event of breakdown inside GIL. UHF sensors are the external type and installed at outside of insulating spacers of GIL. And we used wavelet signal processing to analyze the discharge signals and confirm the exact fault location findings in the GIL test line. This method can overcome demerit of TDR(Time Domain Reflectometer) method having been applied to detect fault location for conventional underground transmission lines, and Ground Fault Sensors used in conventional GIS systems. TDR method requires high level of specialty and experience in analyzing the measured signals. Ground fault sensors are installed inside GIL and can be destroyed by high transient voltage. This paper's method can simplify the fault location process and minimize the damage of sensors. In addition, this method can estimate the fault location only by the time difference when discharge signals are arrived to detecting sensors at the ends of GIL sections without reasons of breakdown. To test the performance of our method, we installed sensors at the ends of test line of GIL(84m) and sensed discharge signals occurred in GIL, energized with AC voltage generator up to 700kV.

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.

765 kV 교류 2회선 송전선 하의 인체 및 자동차에 유도되는 전압, 전류 계산 (Calculation of the induced voltage and current for a human and a car close to 765 kV AC double circuit transmission line)

  • 민석원;김응식;명성호;이병윤;박종근
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.301-309
    • /
    • 1996
  • This paper estimates the electric field effect near 765[kV] AC double transmission line with numerical data. The induced voltage and current of a human and car under who kinds of phase arrangement are calculated when each of two objects is insulated or grounded. When the calculated results of the low-reactance and superposition phase arrangement are compared, it is proved that the induced voltage and current of the former are about 30 [%] smaller than that of the latter. The induced current of a human and car are less than 0.5[mA] which is about 10[%] less than that of the American National Standard Code. Also the induced voltage and current of dead lines by other live lines are calculated. Finally the effective number and position of shield wires to reduce the field in ground level are considered. charge simulation method and surface charge method are used to simulate the 2 or 3 dimensional transmission line model respectively.

  • PDF