• Title/Summary/Keyword: Line arrester

Search Result 100, Processing Time 0.023 seconds

Optimal Design of a Follow Current Disconnector for DC Arresters in Traction Vehicles

  • Wang, Guoming;Kim, Sun-Jae;Park, Seo-Jun;Kil, Gyung-Suk;Ji, Hong-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.289-292
    • /
    • 2016
  • This paper dealt with the optimal design of a follow current disconnector for DC arresters used in electric traction vehicles. The disconnector separates the ground lead from an arrester to prevent a line-to-ground fault of an aged arrester and should not affect the operation and function such as the reference and the clamping voltage of the connected arrester. The designed disconnector is composed of a resistor, a spark gap, and a cartridge. The results showed that the sparkover voltage increased with the gap distance whereas the reference voltage was almost the same as that without the disconnector. The sparkover voltage was 3.95 kV when the gap distance was 0.5 mm. Regardless of the gap distance, the reference and the clamping voltage of the assembled disconnector with an arrester were measured to be the same as those of the arrester alone.

The Leakage Current Analysis of ZnO Arrester Using Leakage Current Dete (피뢰기 누설전류 분석장치를 이용한 ZnO 피뢰기의 누설전류 변화 분석)

  • Kim, Young-Chun;Moon, Sun-Ho;Oh, Jung-Hwan;Kim, Jae-Chul;Lee, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1082-1084
    • /
    • 1998
  • In this paper, we developed a diagnosis device for ZnO arrester to detect on-line leakage current and acquire data from the power distribution system. The arrester is important power equipment used in power transmission and distribution systems to protect the generator and the main transformer from surge and overvoltage. First of all we developed a diagnosis device for ZnO arrester leakage current. And then we detect the total leakage current by the developed device without disconnecting the arrester ground wire and analysis the 3rd order harmonic by Fast Fourier Transform(FFT) to diagnose the ZnO arrester deterioration. With measuring the total current and the resistive current of power distribution system in operation, we analysis the trend of resistive current component in the total leakage current. We expect the result will be promote the method to protect electrical utility and customer from accident.

  • PDF

The Calculation of Unbalanced Voltage on the tertiary bus of a single phase auto transformer in case of Parallel Operation with Different Manufacturer (제작소가 상이한 단상 주변압기 병행 운전시 불평형전압의 검토)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Joe, S.H.;Hur, Y.H.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.458-460
    • /
    • 2001
  • This paper described the unbalanced voltage on the tertiary bus of a single Phase auto transformer in the case of parallel operation with different manufacturer at each Phase. The unbalanced capacitances between primary to secondary winding, secondary to tertiary winding and primary to tertiary winding makes unbalanced bus voltage in the tertiary bus side. The unbalanced voltage let the surge arrester to operate in the power frequency range, and it causes the arrester to burn out. The failure of the arrester at one phase makes line to ground fault, which lead to the surge arrester failure of the other two phase on the tertiary bus.

  • PDF

Design of Leakage Current Detecting Equipment of an Arrester Diagnostic Type in a Distribution Line (배전선로용 피뢰기 진단형 누설전류 검출장치 설계)

  • Yoon, Gi-Gab;Park, Jong-Beom;Yoon, Suk-Mu;Lee, Seung-Hak;Kim, Hong-Pil;Kim, Kwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.501-503
    • /
    • 2000
  • Since an arrester has been generally used at the distribution line and abroad for the protection of electrical equipments against overvoltage (or abnormal surge) taking place in or from an electrical system, a fault, especially, in the distribution line is very likely to result in the destruction of insulation of other protection devices to cause an overall paralysis of a power system, a chaos. Considering the importance of arresters, its earlier replacement than its proposed life cycle causes an economical loss, and a negligence not to replace or repair it in time gives rise to a crucial accidence. The purpose of this paper is to invent an electric leakage current detector and to solve such problems by the continuous and regular inspection of an arrester.

  • PDF

A simulation of Lightning Performance of the 154 kV Transmission Line with the Surge Arrester Installation (154 kV 송전선로에 피뢰기 설치시 내뢰성 향상효과 모의)

  • Shim, Eung-Bo;Woo, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1642-1644
    • /
    • 1997
  • The simulation study of lightning faults reducing effects by the installation of surge arresters on the 154 kV transmission line is stated here. For the purpose of detailed simulation of arcing horn, a flashover model with dynamic characteristics of arcing horn gap was represented as a non-linear inductance which is controlled by EMTP/TACS(Electromagnetic Transient Program/fransient Analysis of Control Systems) switches. The back flashover inducing current was increased from 50 kA to 88 kA by the installation of surge arresters on the transmission line which has one ground wire and 20 ohms of tower footing resistances. The great advantage of surge arrester installation on one circuit of the double circuit transmission line is to prevent the simultaneous back flashover up to 190 kA.

  • PDF

A Study on the Grounding Resistance Effects of Lightning Arrester for Lightning Stroke Protection in Electric Distribution Systems (배전계통에서 낙뢰보호용 피뢰기의 접지저항 영향에 관한 연구)

  • Kim, Kyung-Chul;Jung, Ji-Won;Lee, Kyu-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.107-114
    • /
    • 2010
  • Lightning is the discharging of high-voltage charged cells within clouds to earth other or to the earth. Lightning protection grounding is essential for the protection of buildings, distribution lines, and electrical equipment from lightning surges. Equipment grounding is for the purpose of controlling the voltage to earth within predictable limits. This paper investigates the effects of lightning arrester grounding resistance by analysing the neutral to earth voltages and arrester break down voltages when the lightning strike hits the distribution line. The case study was simulated numerically and graphically through the use of the EDSA software program.

Development of Lightning Arrester Degradation Monitoring System Using ZCT (ZCT틀 이용한 피뢰기 열화 감시 시스템 개발)

  • Park, J.N.;Lee, Y.H.;Jang, S.H.;Kim, P.S.;Shin, Y.S.;Kim, Y.G.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1626-1628
    • /
    • 2003
  • The lightning arrester is a very important overvoltage protection device in the electric power system. Therefore, the inspection of lightning arrester whether it keeps its performance or not properly has close related to verifying the safety confidence of the electric power system. But the development of the deterioration measuring method and on-line detecting system, is necessary to monitor the deterioration of the lightening arrestor. In this paper, we developed the lightning arrester degradation monitoring system. This system detected leakage current of lightning arrester by using the ZCT, and analyze the third harmonics ingredient of leakage current using DFT method in the Data Acquisition Unit(DAU). The analyzed current signal is transmit to the Human-Machine Interface(HMI), and HMI alarmed when accident are occurred and informed with the amplitude of leakage current to the operator.

  • PDF

A Study on the Effects of Lightning Arrestors Installment on a 154kV Transmission System (154kV 송전선로용 피뢰기 현장 설치 효과 분석)

  • Choi, Han-Yeol;Gu, Sung-Wan;Min, Byeong-Wook;Park, Soon-Kyu;Lee, Bong-Hee;Kwak, Joo-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.184-189
    • /
    • 2009
  • Lightning has been identified as one of the leading causes of outages on transmission and distribution systems. As sensitive loads and reliance on electric power increase year by year, it is getting more focus on stable and high quality of power supply. To protect the transmission and distribution line from lightning, the transmission lightning arrester can be the effective facility on the power system. This paper discusses Gapped type Arresters application results by analysing effects of lightning arresters on transmission and distribution line.

Switching Surge Analysis and Evaluation in Combined Transmission System with 345kV GIL (345kV급 가공송전선로와 GIL이 연계된 혼합송전계통에서 개폐과전압 해석 및 검토)

  • Jang, Hwa-Youn;Lee, Jong-Beom;Kim, Yong-Kap;Jang, Tae-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1811-1816
    • /
    • 2011
  • This paper describes switching surge analysis for reclosing decision in 345kV combined transmission line with GIL. Reclosing operation should be decided based on the detailed technical analysis in combined transmission line because this line includes power cable section which is week on insulation. Insulation of power cable can be breakdown at the week point in case of reclosing moment. Therefore the detailed analysis has to be carried out by considering several conditions such as charging rate, inserting resistance, arrester, length ratio of power cable section, grounding resistance, etc. Analysis is performed by EMTP/ATP.

Comparison on Characteristics between air-gap type and gapless In transmission LA (송전선로 피뢰기 적용 및 외부 갭형과 갭레스형의 동작특성 비교)

  • You, Hee-Young;Kim, Jong-Chae;Kim, Byeong-Heon;Park, Yoon-Seok;Lee, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.347-348
    • /
    • 2008
  • This paper presents the use of Line Surge Arresters on 154kV double circuit lines. The ouatge rate which is highly related to the tower footing resistance is showed during the last a few year. The general methods that have been adopted at lines also are introduced. Lightning performance of lines without and with line surge arrester is studied and compared. The characteristics between air-gap type and gapless type LSA also compared. Line surge arrester installation strategy is presented.

  • PDF