• Title/Summary/Keyword: Line Heating Method

Search Result 142, Processing Time 0.039 seconds

Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating (고주파 유도 단일패스 선상가열 유기 후판 성형 기술)

  • Lee, K.S.;Eom, D.H.;Kim, C.W.;Pyun, S.Y.;Son, D.H.;Gong, G.Y.;Kim, B.M.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

Numerical analysis for mitigating thermal stratification flow of pressurizer surge horizontal pipe by outside heating (가압기 밀림관 수평배관 외부 가열에 의한 열성층 유동 완화 수치해석)

  • Jeong, I.S.;Kim, Y.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.670-678
    • /
    • 1997
  • A method to mitigate the thermal stratification phenomenon of pressurizer surge line is proposed by heating bottom outside of horizontal pipe. Unsteady two dimensional model has been used to numerically investigate an effect of heating the bottom of pipe. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature and streamline profiles of fluids and pipe walls with time are compared with the previous study result. The numerical result of this study shows that the outside heating can relaxate the thermal stratification flow of the pressurizer surge line. Maximum dimensionless temperature difference between hot and cold sections of the pipe inner wall which causes thermal stratification was reduced from 0.514 to 0.424 at dimensionless time 1, 632 and 1, 500 respectively.

Development of Knowledge-based Method to Automatically Derive the Deformation Estimation Formula due to Line Heating (선상가열 변형예측식 자동 산출을 위한 지식기반 방법의 개발)

  • Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.92-99
    • /
    • 2010
  • For the last couple of decades many studies have been carried out to find out solutions to improve the effectiveness and productivity of the plate forming process. The practical way for the automation of the plate forming process has not been, however, developed yet. Since the characteristics of heating machines may be different form each other, it is necessary to investigate the thermal deformation characteristics of the heating machine to be used in the automation system. And their characteristics may be updated as new information about thermal deformation by heating is accumulated. In this paper, data base system has been constructed based on the results of experiments and numerical analyses, which will be used in deriving the deformation estimation formula. The computer code which can automatically derive the deformation estimation formula has been also developed. This paper also illustrates how the formula is updated as experimental data are added. From the present findings, it can be said that the automatic deriving procedure may be important in the automated plate forming system since the heating line information to be generated must be directly influenced by the deformation estimation formula.

Design of Induction Heating Coil for Automatic Hull Forming System

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.360-366
    • /
    • 2018
  • In shipyards hull forming is performed by the line heating method using a gas torch and by cold treatment using a roll-press. However, this forming process has some issues, such as difficulties in controlling and accurately estimating the amount of the heat input, as well as a harsh working environment due to exposure to loud noises and air pollution. The induction heating method, which is introduced in this paper, exhibits good control and allows for the estimation of precise heat input. Also, workers can carry out the induction heating in a comfortable working environment. In this research, the induction heating simulation, which consists of electro-magnetic, heat transfer and thermal elasto-plastic analysis, was developed and modified through induction heating experiments. Finally, the effective heating coil was designed for the automatic hull forming system based on the results of induction heating simulation. For the purposes of a future study, if an algorithm to obtain optimal working conditions is developed, automatic systems for hull forming can then be constructed.

Development of simulation method for heating line optimization of E-Mold by using commercial CAE softwares (전산모사 프로그램을 이용한 E-MOLD의 Heating Line 배치의 최적화 설계에 관한 연구)

  • Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1754-1759
    • /
    • 2008
  • To produce plastic parts that have fine pattern through conventional injection molding, a lot of difficulties follow. Therefore, rapid heating and cooling methods are good candidates for manufacturing injection-molded parts with micro/nano patterns. In this study, we adopted the E-Mold patent technology. The mold for E-Mold technology has a separate heated core with micro heaters. It is very important to optimize the lay-out of the heaters in heated core because it influences both control and distribution of mold temperature. We developed a optimization method of heating line lay-out by using commercial softwares and compared the output with the experimental results. We used Pro-Engineer Wildfire 2.0 for the mold design, ICEMCFD for mesh generation, and FLUENT for heat transfer simulation. The simulation results showed the temperature profile from $60^{\circ}C$ to $120^{\circ}C$ or $180^{\circ}C$ during heating and cooling process which were compared with the injection molding experiments. We concluded that the simulation could well explain the experimental results. It was shown that the E-Mold optimization design for heater lay-out could be available through the simulation.

Tip-less PDP Vacuum In-Line Sealing Technology by Bubble-Reduced Frit along an Auxiliary Heating Line

  • Kwon, Sang-Jik;Yang, Hwi-Chan;Lee, Myung-Sik;Whang, Ki-Woong;Jung, Dong-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.643-646
    • /
    • 2002
  • Sealing of two glass plates composing of PDP panel was done in a vacuum chamber by using an auxiliary heating line(AHL). In order to improve the uniformity of sealing temperature and reduce the panel temperature during sealing, the AHL was introduced by a screen printing method inside a frit glass and used as a part of heating source for the frit melting. By using the AHL technology and the specially prepared frit glass, we have successfully sealed a PDP test panel without bubbles and any leak through the frit glass.

  • PDF

Heating type of die surface for removing weld line using high temperature air jet (웰드라인 제거를 위한 고온 기체 분사를 이용한 금형 표면의 가열기법)

  • Kim, Gyeong-Ha;Kim, Sun-Gyeong;Yu, Yeong-Eun;Jea, Tae-Jin;Choi, Du-Seon
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2008
  • The application range of injection molded parts is expanding by the development of engineering plastics with good mechanical properties. Plastic products are specially used as automotive parts due to an excellent performance in the characteristics of a strength vs. weight. In this study, heating type of new method such as jet injection was applied to improve heat transfer coefficient is substituted for heating method of injection molding.

  • PDF

A Study on the Control of Solenoid Valve for Heating by using Power Line Communication (PLC) (전력선 통신을 이용한 난방용 솔레노이드밸브 제어에 관한 연구)

  • 신관우;김용태;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.647-650
    • /
    • 2003
  • PLC (Power Line Communication) is the communication method using the existing power line installed in houses and offices to convert and transmit high frequency communication signal from tens of KHz to tens of MHz, and receive the filtered signal using high frequency filter The advantage of PLC is that PLC uses the existing power line installed in houses and offices so it does not require separate power line. Easy and convenient access using electric outlets is another advantage of PLC. However, PLC has some disadvantages such as limited transmission power, high load interference and noise, variable signal attenuation, characteristic of impedance, and selective possibility of frequency property. We designed the boiler temperature control system unit by using the PLC modem. We can avoid unnecessary heating of separate temperature control unit, and save the cost accordingly control stability of the proposed system is proven through the experiment.

Determination of Inherent Strain Regions to Estimate Plate Deformation by Line Heating (선상가열 판변형 해석을 위한 고유변형도 영역의 결정법)

  • Chang-Doo Jang;Yun-Sok Yun;Dae-Eun Ko;Sung-Choon Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.82-89
    • /
    • 2002
  • The inherent strain method is known to be very effective in predicting the plate deformation by line heating. Traditionally the inherent strain regions have been determined from the temperature distribution and the phase transformation regions(Ac3) of welding experiments. Since the phenomena of line heating are similar to those of welding, the experimental results under the same welding conditions have been applied directly to line heating analysis. The results cannot, however, reflect the effect of heating pattern and plate thickness. Besides, water-cooling in the actual heating process can alter the steel's phase to martensite and shear plastic deformation occurs during the transformation. In this study, the experimental measurement of temperature distribution was substituted with a transient heat transfer analysis using FEM so that we could obtain the temperature distribution according to heat flux models of the heating pass. In order to consider plastic strains occurring additionally under phase transformation, inherent strain regions were assumed to be limited to the eutectoid temperature(Ac1). Using the regions, plate deformations could be predicted to validate our method and the results were in good agreement with the experimental ones

Study on the Generalization of the Equivalent Point Method for Thermal Evaluation (Equivalent Point Method의 일반적 이용을 위한 연구)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.575-581
    • /
    • 1990
  • The existence of the equivalent point for a thermal processing system was demonstrated using arbitrarily chosen ideal direct heating curves. i.e. isothermal heating curves at $120^{\circ}C$ for 10min and at $135^{\circ}C$ for 10sec. Under these conditions, G-values and F-values were calculated at various values of Ea- and z-values by applying the Arrhenius and the Bigelow models respectively. The equivalent time and equivalent temperature were determined by both line intersection and linear regression methods. The equivalent points estimated by both the line intersection and the linear regression methods were consistent and their values were the same as the heating time and temperature of the ideal direct heating curves.

  • PDF