• Title/Summary/Keyword: Line Crack

Search Result 347, Processing Time 0.021 seconds

ANALYSIS FOR 3-POINT LOADED DISC BY PHOTOELASTICITY (3점 압축하중을 받는 원판의 광탄성 해석)

  • 함경춘;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • Disc specimen with the center crack and edge crack simulated by two-dimensional static method is used to analyze the stress field around the crack tip in terms of the stress intensity factor, K. A simple and convenient method of testing to realize the mifed mode stress intensity factor of the cracked body is used, The conclusions obtatined in this photoelastlc analysis are as follows ; 1. According to this experiment, cracked disc specimen can be used to demonstrate the mixed mode stress intensity factor analysis by simply changing the crack angle from the loading line. 2. Despite the simplicity and continuous data reading, the photoelastic method shows the slightly lower strain reading comparing to the FEM analysis method. 3. In this photoelastic analysis, $K_{I}$ of center cracked disc specimen under a pair of compressive load shows negative value as the crack angle increases over 30$^{\circ}$.

  • PDF

Numerical Analysis of J-integral Value in the Rectangular Plate with a Crack (균열(龜裂)을 가진 사각평판(四角平板)의 수치해법(數値解法)에 의(依)한 J-적분치(積分値))

  • D.S.,Kim;J.E.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 1984
  • A line integral is exhibited which has the same value for all paths surrounding the tip of crack in a two dimensional strain field of elastic-plasticc material. Finite element method was used to determine Rice's J-integral value in centrally cracked plate. These numerical J-integral values were compared with corresponding values of reference with low hardening and high yield strength. The J-integral value was also computed for a crack extension and different load condition. For increasing crack length the value of J-integral also increases, this means that the crack is unstable. To prove path independent, three paths were used in the analysis and proved.

  • PDF

Measurement of Dynamic Crack Propagation Velocity in Polymers (고분자 재료의 동적 균열전파속도 측정)

  • 이억섭;한민구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.947-951
    • /
    • 1989
  • It is well-known that the parameters of dynamic fracture mechanics depend not only on dimensions, loading and boundary conditions but also on the dynamic crack propagation velocity. Because the measurement of dynamic crack propagation velocity measuring device which can easily be expanded without modification is proposed in this report. it was found that the experimentally determined dynamic crack propagation velocity agreed well with those from other investigations in some polymers such as PMMA. Homalite-100 and Epoxy.

Line Laser Image Processing for Automated Crack Detection of Concrete Structures (콘크리트 구조물의 자동화 균열탐지를 위한 라인 레이저 영상분석)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.147-153
    • /
    • 2018
  • Cracking in concrete structure must be examined according to appropriate methods, to ensure structural serviceability and to prevent structural deterioration, since cracks opened wide for a long time expedite corrosion of rebar. A site investigation is conducted in a regular basis to monitor structural deterioration by tracking growing cracks. However, the visual inspection are labor intensive. and judgment are subject. To overcome the limit of the on-site visual investigation image processing for identifying the cracks of concrete structures by analyzing 2D images has been developed. This study develops a unique 3D technique utilizing a line laser and its projection image onto concrete surfaces. Automated process of crack detection is developed by the algorithms of automatizing crack map generation and image data acquisition. Performance of the developed method is experimentally evaluated.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.

Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy (5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성)

  • 옹장우;진근찬;이성근;김종배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 1989
  • For the mixed-mode crack problems the direction of crack growth, the crack path and the rational representation of fatigue crack growth rates should be studied to predict fatigue life and safety of structures. In this study, a round specimen which produce nearly identical effects in all loading directions is proposed to make an easy measurement of initial direction of crack growth. The mode I and mode II stress intensity factors of the specimen were calculated using finite element method, in which the square root singular stresses at the crack tip are modeled by means of four rectangular quarter-point eight-noded elements surrounding the crack tip. Experimental results for high strength aluminum alloy showed that the direction of mixed-mode crack growth agree well with maximum principal stress criterion as well as minimum strain energy density criterion, but not with maximum shear stress criterion. From data of fatigue crack growth rates using crack geometry projected on the line perpendicular to the loading direction it is easily established that mixed-mode fatigue crack growth in 5083-H115 aluminum alloy goes predominantly with mode I crack growth behaviors.

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

A Study on the Stress ratio affect on the Fatigue Crack Characteristics of Pressure Vessel SA516 Steel at Low Temperature (저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1228-1236
    • /
    • 2001
  • In this study, CT specimens were prepared from ASTH A5l6 steel which was used for pressure vessel plates for moderate and lower temperature service. And we got the fellowing characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$ , $-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the Threshold stress intensity factor range ΔAKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\DeltaK$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN-$\Delta$K in Region II that is, the fatigue clack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

The Measurement of the Depth of Crack using Images of SLAM (SLAM 영상을 이용한 크랙 깊이 측정)

  • Hwang, Ki-Hwan;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.51-56
    • /
    • 1997
  • In this paper, we studied the configuration and depth measurement method of the crack in the interior of solid with scanning laser acoustic microscope. Precision measurement method of crack depth is required in SLAM because that system reconstructs the shadow image to the transmission coefficient. We proposed this method that used geometrical structure to the shadow area of SLAM images obtained from oblique incidence and the mode conversion of ultrasound in specimen and then experimented it. For this experiment, we fabricated various specimens which had the vertical line-crack with different depth and made the wedge as 20$^{\circ}$ for oblique incidence. Experimental results showed that the shadow area of SLAM images were proportional to the depth of crack. Measured depth error to the crack was less than 6% compared with practical crack depth.

  • PDF

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF