• Title/Summary/Keyword: Line Pressure Control Valve

Search Result 57, Processing Time 0.021 seconds

A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control (고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구)

  • Lee, Yong-Joo;Kim, Byeong-Woo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

A Study on the Pressure Surge of ABS Hydraulic System (ABS 유압 장치의 유충 현상에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.140-147
    • /
    • 2001
  • The solenoid valve in ABS hydraulics, modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the inlet valve is switched from open state to closed state, there are braking force degration, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder. In this study, identifies pressure surge phenomenon in the braking process of a ABS, and investigates the way to reduce the phenomenon. For the purpose theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. During this analysis, we could find pressure surge characteristics change due to hydraulic line change and PWM control conditions. In conclusion, by using the results of this study for the pressure surge prediction and reduction method, we could expect braking performance enhancement in Anti-Lock Braking System.

  • PDF

Study on Robust Control for Proportional Pressure Control Valve with MRC (MRC를 이용한 비례압력제어밸브의 강인한 제어에 관한 연구)

  • Yun, So-Nam;Jeong, Hwang-Hun;Lee, Ill-Young
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • The proportional pressure control valve that was used to relief valve has different dynamic characteristics on each case. Because this valve has different assembling or processing error and environmental condition. However, a customer who used the relief valve wants to have a steadily performance even if the dynamic characteristics of valve was changed. For this reason, the manufacturer try to make the robust controller that has simple structure. This paper concerns about the design of robust controller that didn't affected by plant parameter's changing. The control strategy is a model reference control that conducted by on line identification problem, gradient method and Lyapunov equation. This adaptvie control law's validity that this paper deal with was confirmed by an results of step response test or hysteresis test.

A Study on Dynamic Characteristics of Directional Control Logic Valve (방향제어 조직밸브의 동특성에 관한 연구)

  • Lee, Il-Yeong;Oh, Se-Kyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.172-179
    • /
    • 1988
  • A cartridge type hydraulic logic valve consists of simple two port valve whose poppet is closed or opened by means of pressure signal of a pilot line. Accordingly, the logic valve can be used not only for direction, flow and pressure control purpose but also for versatile function valve which enables all above mentioned functions. In addition, the valve has little internal leakage and pressure loss, superior response characteristics and easiness in making small block type valve. The above mentioned good performances being recognized recently, the logic valve has been used widely in the large scale hydraulic system such as a hydraulic press system, for the performance requirements of high speed operation and precise control characteristics. However, there are scarce reports until now, except for a few ones from Aachen Institute of Technology in West Germany, so it is necessary to be studied on development and investigation for practical application. This paper showed that the static and dynamic characteristics of a logic valve when the logic valve is used for directional control, to investigate the relations between the valve operating characteristics and the valve design conditions. From the above mentioned procedure, it was ascertained that the valve operation characteristics obtained by numerical analysis showed good agreements with experimental results. The representative results obtained are as follows; 1. During the valve is closing, the poppet velocity is almost constant in the logic valve. 2. The pilot pressure P sub(3) and the resistance R in the pilot line have much influences on the valve operation time. 3. Spring strength have not such a severe influence on the valve operating time. 4. The operation characteristics of the logic valve can be estimated with good accuracy comparatively by numerical analysis with the equations describing poppet motion.

  • PDF

Optimal Engine Operation by Shift Speed Improvement for a CVT (CVT 변속속도 개선에 의한 엔진최적운전)

  • Lee, Hee-Ra;Kim, Hyun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.546-551
    • /
    • 2001
  • In this paper, an algorithm to improve the optimal engine operation is suggested by increasing the CVT shift speed. By rearranging the CVT shift dynamic equation, it is found that the CVT shift speed depends on the line pressure as well as the primary pressure. Based on the shift dynamics, an algorithm to accomplish a faster shift speed is presented by increasing the line pressure. In order to apply the algorithm, dynamic models of the line pressure control valve and the ratio control valve are obtained by considering the CVT shift dynamics and model based controllers are designed. It is found from the simulation results that fuel economy can be improved by 2% in spite of the increased hydraulic loss due to the increased line pressure.

  • PDF

Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics (CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석)

  • 정근수;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures (배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구)

  • Kim, Sung Dong;Joo, Byeol Jin;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

Waterhammer For In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, S C.;Lee, K. B.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

A Study on Pressure Surge Accompanied by Repeated Valve Operation in Oil Hydraulic Pipeline (유압관로에서 절환밸브 반복조작에 따른 충격압력 발생 현상에 관한 연구)

  • Jung, Yong-Gil;Yum, Man-U;Lee, Jin-Geol;Lee, Il-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.2
    • /
    • pp.33-42
    • /
    • 1988
  • In a large scale oil hydraulic system having repeatedly operated actuator, such as a large scale forging press, pressure surges often due to the recombination of oil column in a return line attached to the downstream side of a directional control valve. Expecially, the pressure surges appear very severe ones at a certain valve operating frequency. These pressure surges restrict the operating frequency of the hydraulic system. But related reports on the above mentioned phenomenon are rarely to be found. In this study, therefore, the authors investigate the exact reason why such severe pressure surges occur at a certain range of valve operating frequency. The study is performed by experiment and numerical computation on the relationship between pressure surges and valve operating frequency.

  • PDF

Shift Speed Improvement of a Metal Belt CVT

  • Lee, Heera;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1623-1629
    • /
    • 2001
  • This parer presents a CVT line pressure control strategy for the increased shift speed. Firstly, an algorithm to increase the CVT shift speed is suggested based on a modified CVT shift dynamics and shift speed maps are constructed. In addition, simplified dynamic models of the line pressure and the ratio control valve are derived by considering the CVT shift dynamics, and low level control algorithms for the ratio and the line pressure control are proposed. Using the shift speed maps and the simplified dynamic models of the CVT system, shift performance is investigated. It is found from the experimental and simulation results that improved shift speed can be achieved by increasing the lilly pressure.

  • PDF