• Title/Summary/Keyword: Limited Memory

Search Result 537, Processing Time 0.024 seconds

Exploiting Memory Sequence Analysis to Defense Wear-out Attack for Non-Volatile Memory (동작 분석을 통한 비휘발성 메모리에 대한 Wear-out 공격 방지 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.86-91
    • /
    • 2022
  • Cache bypassing is a scheme to prevent unnecessary cache blocks from occupying the capacity of the cache for avoiding cache contamination. This method is introduced to alleviate the problems of non-volatile memories (NVMs)-based memory system. However, the prior works have been studied without considering wear-out attack. Malicious writing to a small area in NVMs leads to the failure of the system due to the limited write endurance of NVMs. This paper proposes a novel scheme to prolong the lifetime with higher resistance for the wear-out attack. First, the memory reference pattern is found by modified reuse distance calculation for each cache block. If a cache block is determined as the target of the attack, it is forwarded to higher level cache or main memory without updating the NVM-based cache. The experimental results show that the write endurance is improved by 14% on average and 36% on maximum.

An Analog Memory Fabricated with Single-poly Nwell Process Technology (일반 싱글폴리 Nwell 공정에서 제작된 아날로그 메모리)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1061-1066
    • /
    • 2012
  • A digital memory has been widely used as a device for storing information due to its reliable, fast and relatively simple control circuit. However, the storage of the digital memory will be limited by the inablility to make smaller linewidths. One way to dramatically increase the storeage capability of the memory is to change the type of stored data from digital to analog. The analog memory fabricated in a standard single poly 0.6um CMOS process has been developed. Single cell and adjacent circuit block for programming have been designed and characterized. Applications include low-density non-volatile memory, control of redundancy in SRAM and DRAM memories, ID or security code registers, and image and sound memory.

The Development on Embedded Memory BIST IP Automatic Generation System for the Dual-Port of SRAM (SRAM 이중-포트를 위한 내장된 메모리 BIST IP 자동생성 시스템 개발)

  • Shim Eun-Sung;Lee Jung-Min;Lee Chan-Young;Chang Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.57-64
    • /
    • 2005
  • In this paper, we develop the common CAD tool that creates the automatically BIST IP by user settings for the convenient test of embedded memory. Previous tools have defect that when memory model is changed, BIST IP must re-designed depending on memory model because existing tools is limited the widely used algorithms. We develop the tool that is created automatic BIST IP. It applies the algorithm according to the memory model which user requests We usually use the multi-port asynchronous SRAM needless to refresh as the embedded memory. However, This work researches on the dual-port SRAM.

Design of Virtual Memory Compression System on the Embedded System (임베디드 시스템에서 가상 메모리 압축 시스템 설계)

  • Jeong, Jin-Woo;Jang, Seung-Ju
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.405-412
    • /
    • 2002
  • The embedded system has less fast CPU and lower memory than PC(personal Computer) or Workstation system. Therefore embedded operating is system is designed to efficiently use the limited resource in the system. Virtual memory management or the embedded linux have a low efficiency when page fault is occurred to get a data from I/O device. Because a data is moving from the swap device to main memory. This paper suggests virtual memory compression algorithm for improving in virtual memory management and capacity of space. In this paper, we present a way to performance implement a virtual memory compression system that achieves significant improvement for the embedded system.

A Mobile Flash File System - MJFFS (모바일 플래시 파일 시스템 - MJFFS)

  • 김영관;박현주
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.29-43
    • /
    • 2004
  • As the development of an information technique, gradually, mobile device is going to be miniaturized and operates at high speed. By such the requirements, the devices using a flash memory as a storage media are increasing. The flash memory consumes low power, is a small size, and has a fast access time like the main memory. But the flash memory must erase for recording and the erase cycle is limited. JFFS is a representative filesystem which reflects the characteristics of the flash memory. JFFS to be consisted of LSF structure, writes new data to the flash memory in sequential, which is not related to a file size. Mounting a filesystem or an error recovery is achieved through the sequential approach. Therefore, the mounting delay time is happened according to the file system size. This paper proposes a MJFFS to use a multi-checkpoint information to manage a mass flash file system efficiently. A MJFFS, which improves JFFS, divides a flash memory into the block for suitable to the block device, and stores file information of a checkpoint structure at fixed interval. Therefore mounting and error recovery processing reduce efficiently a number of filesystem access by collecting a smaller checkpoint information than capacity of actual files. A MJFFS will be suitable to a mobile device owing to accomplish fast mounting and error recovery using advantage of log foundation filesystem and overcoming defect of JFFS.

  • PDF

Performance Evaluation of Cache Coherence Scheme for Data Allocation Methods (데이타 배치 방식에 따른 캐쉬 일관성 유지 기법의 성능 평가)

  • Lee, Dong-Kwang;Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.592-598
    • /
    • 2000
  • The locality of data references at the distributed shared memory systems affects the performance significantly. Data allocation methods by considering the locality of data references can improve the performance of DSM systems. This paper evaluates the performance for the dynamic limited directory scheme which data allocation methods can apply very effectively. The information of the data allocation is used by the dynamic limited directory scheme to set the presence bit effectively. And the proper use of the presence bit improves the performance by reducing memory overhead and using directory pool efficiently. Simulations are conducted using three application programs which have various data sharing. The results show that the optimal data allocation method improves the performance up to 3.6 times in the proposed scheme.

  • PDF

In-depth Analysis and Performance Improvement of a Flash Disk-based Matrix Transposition Algorithm (플래시 디스크 기반 행렬전치 알고리즘 심층 분석 및 성능개선)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.377-384
    • /
    • 2017
  • The scope of the matrix application is so broad that it can not be limited. A typical matrix application area in computer science is image processing. Particularly, radar scanning equipment implemented on a small embedded system requires real-time matrix transposition for image processing, and since its memory size is small, a general matrix transposition algorithm can not be applied. In this case, matrix transposition must be done in disk space, such as flash disk, using a limited memory buffer. In this paper, we analyze and improve a recently published flash disk-based matrix transposition algorithm named as asymmetric sub-matrix transposition algorithm. The performance analysis shows that the asymmetric sub-matrix transposition algorithm has lower performance than the conventional sub-matrix transposition algorithm, but the improved asymmetric sub-matrix transposition algorithm is superior to the sub-matrix transposition algorithm in 13 of the 16 experimental data.

Parallel Computing Environment for R with on Supercomputer Systems (빅데이터 분석을 위한 슈퍼컴퓨터 환경에서 R의 병렬처리)

  • Lee, Sang Yeol;Won, Joong Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.19-31
    • /
    • 2014
  • We study parallel processing techniques for the R programming language of high performance computing technology. In this study, we used massively parallel computing system which has 25,408 cpu cores. We conducted a performance evaluation of a distributed memory system using MPI and of a the shared memory system using OpenMP. Our findings are summarized as follows. First, For some particular algorithms, parallel processing is about 150 times faster than serial processing in R. Second, the distributed memory system gets faster as the number of nodes increases while shared memory system is limited in the improvement of performance, due to the limit of the number of cpus in a single system.

System Software Modeling Based on Dual Priority Scheduling for Sensor Network (센서네트워크를 위한 Dual Priority Scheduling 기반 시스템 소프트웨어 모델링)

  • Hwang, Tae-Ho;Kim, Dong-Sun;Moon, Yeon-Guk;Kim, Seong-Dong;Kim, Jung-Guk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.260-273
    • /
    • 2007
  • The wireless sensor network (WSN) nodes are required to operate for several months with the limited system resource such as memory and power. The hardware platform of WSN has 128Kbyte program memory and 8Kbytes data memory. Also, WSN node is required to operate for several months with the two AA size batteries. The MAC, Network protocol, and small application must be operated in this WSN platform. We look around the problem of memory and power for WSN requirements. Then, we propose a new computing model of system software for WSN node. It is the Atomic Object Model (AOM) with Dual Priority Scheduling. For the verification of model, we design and implement IEEE 802.15.4 MAC protocol with the proposed model.

  • PDF

Design of NAND Flash Translation Layer Based on Valid Page Lookup Table (유효 페이지 색인 테이블을 활용한 NAND Flash Translation Layer 설계)

  • 신정환;이인환
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.15-18
    • /
    • 2003
  • Flash memory becomes more important for its fast access speed, low-power, shock resistance and nonvolatile storage. But its native restrictions that have limited 1ifetime, inability of update in place, different size unit of read/write and erase operations need to managed by FTL(Flash Translation Layer). FTL has to control the wear-leveling, address mapping, bad block management of flash memory. In this paper, we focuses on the fast access to address mapping table and proposed the way of faster valid page search in the flash memory using the VPLT(Valid Page Lookup Table). This method is expected to decrease the frequency of access of flash memory that have an significant effect on performance of read and block-transfer operations. For the validations, we implemented the FTL based on Windows CE platform and obtained an improved result.

  • PDF