• 제목/요약/키워드: Limit state analysis

검색결과 648건 처리시간 0.02초

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

마찰 기인 2 자유도계 시스템의 자려진동에 대한 댐핑의 영향 (The effects of damping on the limit cycle of a 2-dof friction induced self-oscillation system)

  • 조용구;신기흥;오재웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.89-96
    • /
    • 2002
  • A two-degree of freedom model is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the disk of the brake, The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, not only the existence of the limit cycle but also the size of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency ((1)two masses with same natural frequencies, (2) with different natural frequencies), the propensity of limit cycle is discussed in detail. The results show an important fact that it may make the system worse when too much damping is present in the only one part of the masses.

  • PDF

마찰 기인 2자유도계 시스템의 자려진동에 대한 댐핑의 영향 (The Effects of Damping on the Limit Cycle of a 2-dof Friction Induced Self-oscillation System)

  • 조용구;신기홍;이유엽;오재응
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.502-509
    • /
    • 2002
  • A two-degree of freedom model Is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the dusk of the brake. The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this Paper, not only titre existence of the limit cycle but also the sloe of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency[(1) Two masses with same natural frequencies, (2) with different natural frequencies] . the propensity of limit cycle Is discussed In detail. The results show an important fact that it may make the system worse when too much damping Is present in the only one part of the masses.

다중하중에 따른 경사제 피복재의 추계학적 신뢰성 해석 (Stochastic Reliability Analysis of Armor Units of Rubble-Mound Breakwaters Subject to Multiple Loads)

  • 이철응
    • 한국해안·해양공학회논문집
    • /
    • 제24권2호
    • /
    • pp.138-148
    • /
    • 2012
  • 경사제에 불규칙하게 작용하는 임의 크기의 다중하중으로 인해 피복재의 안정성에 대한 성능이 시간에 따라 어떻게 달라지는지를 해석할 수 있는 추계학적 신뢰성 해석 모형이 개발되었다. Hudson의 공식과 Melby 공식을 이용하여 재현기간에 따른 파고의 함수로 경사제 피복재의 초기 저항력 크기와 피해율을 확률적으로 산정할 수 있는 새로운 방법이 제시되었다. 생애기간에 대한 신뢰성 분석을 실시하여 시간에 따른 다중하중의 작용과 사용한계나 극한한계 등 한계상태에 따른 구조물의 성능을 올바로 해석할 수 있었다. 마지막으로 보수보강 목표확률을 시간에 따른 누적파괴확률의 결과와 조합하여 구조물 유지관리에서 가장 중요한 변수인 보수보강 시점을 정량적으로 산정할 수 있는 방법이 제시되었다.

CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준 (A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis)

  • 김성민;이주형;정영훈
    • 한국지반공학회논문집
    • /
    • 제34권12호
    • /
    • pp.59-69
    • /
    • 2018
  • 한계평형법 이론들을 사용하기 위해서는 극한 파괴 상태에서 나타나는 파괴 전단면을 찾아야 한다. 강도 감소법에서는 유한요소해석의 수치해가 일정 반복 횟수 이내에 수렴하지 못하는 시점을 극한 파괴 상태로 정의한다. 하지만 Coupled Eulerian-Lagrangian (CEL)기법을 유한요소해석에서 사용하면 극한 파괴 상태에 도달하여도 수치해의 비수렴 상황이 발생하지 않으므로 이러한 정의는 사용하기 어렵다. 본 연구에서는 CEL 기법을 이용한 유한요소해석에서 지반의 극한 파괴 상태를 감지할 수 있는 객관적인 물리량 기준을 제시하였다. 비배수 조건의 연약지반이 연속기초 하중을 받는 경우 극한 파괴 상태에 해당하는 이론적 하중에서 소성 소산 에너지의 변화속도가 민감하게 변화함을 찾을 수 있었다.

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

Influence of undercut and surface crack on the stability of a vertical escarpment

  • Banerjee, Sounik K.;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.965-981
    • /
    • 2017
  • Stability of vertical escarpments has been the subject of discussion for long time. However, available literature provides scarce knowledge about the effect of the formation of undercut and surface cracks on the stability of a vertical escarpment. The present study deals with a systematic analysis of the effect of surface cracks and undercut on slope stability using finite element based lower bound limit analysis. In the present analysis, the non-dimensional stability factor (${\gamma}H/c$) is used to inspect the degrading effect of undercut and cracks developed at different offset distances from the edge of the vertical escarpment. Failure patterns are also studied in detail to understand the extent and the type of failure zone which may generate during the state of collapse.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

이진화된 결합하중을 갖는 순환결합형 신경회로망의 동적 상태천이 해석 (Analysis of Dynamical State Transition of Cyclic Connection Neural Networks with Binary Synaptic Weights)

  • 박철영
    • 전자공학회논문지C
    • /
    • 제36C권5호
    • /
    • pp.76-85
    • /
    • 1999
  • 신경회로망을 동적 정보처리에 응용하기 위해서는 비대칭 결합 신경회로망에서 생성되는 동적 상태천이에 관한 직관적 이해가 필요하다. 본 논문에서는 각 뉴런이 최근접 뉴런에만 이진화된 결합하중 +1 및 -1로 연결된 순환결합형 신경회로망의 동적인 상태천이 특성을 해석하였다. 상태천이 해석 알고리즘을 이용한 시뮬레이션 결과, 네트워크는 고정점, 베이슨을 갖는 리미트사이클 및 베이슨이 없는 리미트사이클의 3가지 어트랙터를 가진다. 또한, 네트워크에서 생성되는 리미트사이클의 수와 주기를 이론적으로 해석하여 정식화하고, 리미트사이클을 구성하는 상태벡터의 필요조건을 나타내었다. 이론 해석의 결과는 네트워크에서 생성되는 리미트사이클의 수가 뉴런(소자)의 수 n에 대해서 지수 함수적으로 증가함을 보여준다. 따라서 순환 결합형 신경회로망은 많은 동적 정보를 저장할 수 있는 메모리 시스템으로 이용할 수 있다.

  • PDF