DOI QR코드

DOI QR Code

Stochastic Reliability Analysis of Armor Units of Rubble-Mound Breakwaters Subject to Multiple Loads

다중하중에 따른 경사제 피복재의 추계학적 신뢰성 해석

  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University)
  • Received : 2012.03.16
  • Accepted : 2012.04.19
  • Published : 2012.04.30

Abstract

A stochastic reliability analysis model has been developed for evaluating the time-dependent stability performance of armor units of rubble-mound breakwaters subjected to the multiple loads of arbitrary magnitudes which could be occurred randomly. The initial structural capacities and the damage rates of armor units of rubble-mound breakwaters could be estimated as a function of the incident wave height with a given return period by using the modified Hudson's formula and Melby's formula. The structural stability performances of armor units of rubble-mound breakwaters could be analyzed in detail through the lifetime reliability investigations according to the limit states such as the serviceability or ultimate limit state and the conditions of multiple loads. Finally, repair intervals for the structural management of armor units of rubble-mound breakwaters could quantitatively be evaluated by a new approach suggested in this paper that has been based on the target probability for repair and the accumulated probabilities of failure obtained from the present stochastic reliability analysis model.

경사제에 불규칙하게 작용하는 임의 크기의 다중하중으로 인해 피복재의 안정성에 대한 성능이 시간에 따라 어떻게 달라지는지를 해석할 수 있는 추계학적 신뢰성 해석 모형이 개발되었다. Hudson의 공식과 Melby 공식을 이용하여 재현기간에 따른 파고의 함수로 경사제 피복재의 초기 저항력 크기와 피해율을 확률적으로 산정할 수 있는 새로운 방법이 제시되었다. 생애기간에 대한 신뢰성 분석을 실시하여 시간에 따른 다중하중의 작용과 사용한계나 극한한계 등 한계상태에 따른 구조물의 성능을 올바로 해석할 수 있었다. 마지막으로 보수보강 목표확률을 시간에 따른 누적파괴확률의 결과와 조합하여 구조물 유지관리에서 가장 중요한 변수인 보수보강 시점을 정량적으로 산정할 수 있는 방법이 제시되었다.

Keywords

References

  1. Aven, T.J. and Jensen, U. (1999). Stochastic models in reliability. Applications of mathematics; stochastic modelling and applied probability series, 41, Springer, N.Y., USA.
  2. Frangopol, D.M., Kallen, M.J. and Noortwijk, M. (2004). Probabilistic models for life-cycle performance of deteriorating structures: review and future directions, Prog. Struct. Eng. Mater., 6. 197-212. https://doi.org/10.1002/pse.180
  3. Guillaumot, V.M., Durango, P.L. and Madanat, S. (2003). Adaptive optimization of infrastructure maintenance and inspection decisions under performance model uncertainty, J. Inf. Syst. ASCE, 9(4), 133-139. https://doi.org/10.1061/(ASCE)1076-0342(2003)9:4(133)
  4. Hasofer, A.M. (1974). Design for infrequent overloads, Earthquake Eng. Struct. Dynam., 2(4), 387-388.
  5. Kleiner, Y. (2001). Scheduling inspection, renewal of large infrastructure asserts, J. Inf. Syst. ASCE, 7(4), 136-143. https://doi.org/10.1061/(ASCE)1076-0342(2001)7:4(136)
  6. Kubler, O. and Faber, M.H., Optimal design of infrastructure facilities subject to deterioration, Proc. ICASP'03, 1031-1039.
  7. Li, C.Q. (2003). Life cycle modelling of corrosion affected concrete structures-Propagation, J. of Struct. Eng., ASCE, 15(4), 753-761.
  8. Li, C.Q. and Zhao, J.M. (2010). Time-dependent risk assessment of combined overtopping and structural failure for reinforced concrete coastal structures, J. Waterway, Port, Coast., and Ocn. Eng., ASCE, 136(2), 97-103. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000031
  9. Liu, Y. and Wyers, R.E. (1988). Modelling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures, ACI Master J., 95, 675-681.
  10. Madsen, H.O., Krenk, S. and Lind, N.C., 1986, Methods of structural safety, Prentice-Hall, N.J., USA.
  11. Melby, J.A. (1999). Damage progression on breakwaters, Ph.D. thesis, Dept. of Civ. Engrg., Univ. of Delware, USA.
  12. Mishalani, R.G. and Madanat, S.M. (2002), Computation of infrastructure state transition probabilities using stochastic duration models, J. Inf. Syst., ASCE, 8(4), 139-148. https://doi.org/10.1061/(ASCE)1076-0342(2002)8:4(139)
  13. Nagakawa, T. On a replacement problem of cumulative damage model, Oper. Res. Quart., 27(4), 895-900.
  14. Parzen, E. (1962). Stochastic processes, Holden-Day, S.F., USA.
  15. PIANC (1992). Analysis of rubble mound breakwaters, Supplement to Bull., N. 78/79, Brussels, Belgium.
  16. Rosenblueth, E. (1976). Optimum design for infrequent disturbances, J. Struct. Div., ASCE, 102(ST9), 1807-1825.
  17. Rosenblueth, E. and Mendoza, E. (1971). Reliability optimization in isostatic structures, J. Eng. Mech. Div., ASCE, 97(EM6), 1625-1642.
  18. Sanchez-Silva, M. and Rackwitz, R. (2004). Implications of the high quality index in the design of optimum structures to withstand earthquake, J. Struct. Eng., ASCE, 130(6), 969-977. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(969)
  19. Sanchez-Silva, M., Klutke, G.A. and Rosowsky, D.V. (2011). Lifecycle performance of structures subject to multiple deterioration mechanisms, Struct. Safety, 33, 206-217. https://doi.org/10.1016/j.strusafe.2011.03.003
  20. Sherif, Y. and Smith, M. (1981). Optimal maintenance models for systems subject to failure-a review, Naval Res. Logist. Quart., 28, 47-74. https://doi.org/10.1002/nav.3800280104
  21. Val. D. and Stewart, M. (2005). Decision analysis for deteriorating structures, Reliab. Eng. Syst. Safety, 87, 377-387. https://doi.org/10.1016/j.ress.2004.06.006
  22. Wortman, M.A., Klutke, G.-A. and Ayhan, H. (1994). A maintenance strategy for systems subjected to deterioration governed by random shocks, IEEE Trans. Reliab., 43(3), 439-445. https://doi.org/10.1109/24.326441
  23. Yang, Y. and Klutke, G. A. (2000). Improved inspection schemes for deteriorating equipment, Probab. Eng. Inform. Sci., 14, 445-460. https://doi.org/10.1017/S0269964800144043

Cited by

  1. Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters vol.33, pp.3, 2013, https://doi.org/10.12652/Ksce.2013.33.3.1007
  2. Development of Stochastic Markov Process Model for Maintenance of Armor Units of Rubble-Mound Breakwaters vol.25, pp.2, 2013, https://doi.org/10.9765/KSCOE.2013.25.2.52
  3. Discounted Cost Model of Condition-Based Maintenance Regarding Cumulative Damage of Armor Units of Rubble-Mound Breakwaters as a Discrete-Time Stochastic Process vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.109
  4. Development of Stochastic Expected Cost Model for Preventive Optimal- Maintenance of Armor Units of Rubble-Mound Breakwaters vol.25, pp.5, 2013, https://doi.org/10.9765/KSCOE.2013.25.5.276