• Title/Summary/Keyword: Limit of experimental method

Search Result 490, Processing Time 0.027 seconds

Experimental Study on Limiting Temperatures of Structural Beams made with Structural Steel According to Load Ratios (하중비에 따른 강재 보의 한계온도에 관한 실험적 연구)

  • Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.581-588
    • /
    • 2010
  • Recently the requirements of the buildings built with structural steel were increased in terms of structural stabilities and fire resistance at severe fire conditions. To meet the building regulations of fire resistance, a fire design is needed. This is of a prescriptive method and a performance engineering based method. Recently a simple calculation method as one of performance based engineering method is very popular because of its ease for an application in building built with structural steel. But, in Korea the performance based engineering method is not allowed yet. Thus it is needed to make a guideline for the performance based engineering method. The purpose of this study is to establish the limit temperature derived from structural beams made with both a H-section and a H-section filled with concrete at the web and derived the limit temperatures from beams made with H-sections and found out that the limit temperatures from two kinds of specimens depended on the applied loads and the specimens filled with the concrete represented 3 hour fire resistance in the range of 80%, 60%, and 50% of the maximum load.

Experimental evaluation of machining limit in machining V-shaped microgrooves on electroless nickel plated die materials (무전해 니켈도금 소재의 초정밀 가공에서 V-형상 미세 패턴 가공한계에 대한 실험적 평가)

  • Kim, Hyun Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.263-267
    • /
    • 2013
  • The continuing demand for increasingly slimmer and brighter liquid crystal display (LCD) panels has led to an increased focus on the role of light guide panels (LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit (BLU). The most basic process in the production of such BLU components is the micromachining of V-shaped grooves. Thus, given the current trend, micromachining of V-shaped grooves is expected to play increasingly important roles in today's manufacturing technology. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with V-shaped grooves. High-aspect-ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining limit in microcutting V-shaped grooves on electroless nickel plated die materials when using single-crystal diamond tools with point angles of $20^{\circ}-80^{\circ}$. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools. The experimental results are that V-shaped patterns with angles of $80^{\circ}$ or up can be realized regardless of the machining conditions and equipment. Moreover, the feed rate has little effect on machinability, and it is thought that the fly-cut method is more efficient for shallow patterns.

Design of Speed Controller for Stall Blade Wind Turbine Complying with the Speed Limit During Speed Overshoot (속도 오버슈트 발생 시 제한 속도를 초과하지 않는 실속형 블레이드 풍력터빈의 속도제어기 설계)

  • Kim, Ye-Chan;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.438-445
    • /
    • 2022
  • Blade efficiency decreases when the rotor speed is kept constant even though the wind speed is higher than the rated value. Therefore, a speed controller is used to regulate the rotor speed in the high-wind-speed region. In stall-blade wind turbine, the role of the speed controller is important because precise aerodynamic regulation is unavailable. In this study, an effective parameter design method of a PI speed controller is proposed to limit the speed overshoot of a type 4 wind turbine with stall blades even though wind gust occurs. The proposed method considers the efficiency characteristics of the stall blade and the mechanical inertia of the wind turbine rotor. It determines the bandwidth of the speed controller to comply with the speed limit during generator speed overshoot for the worst case of wind gust. The proposed method is verified through intensive simulations with a MATLAB/SIMULINK model and experimental results obtained using a 3 kW MG set of wind turbine simulator.

Practical Method for FLD of Mg Alloy Sheet using FEM (유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법)

  • Kim, K.T.;Lee, H.W.;Kim, S.H.;Song, J.H.;Lee, G.A.;Choi, S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

Soil-water Characteristic Curve Assessment Using a Reference State Concept (비교상태 개념을 이용한 흙-수분 특성곡선 평가)

  • 성상규;이인모;이형주;조국환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2004
  • The goal of this study is to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential fur characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve is verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference state.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Ideal MHD Beta Limit for Optimum Stable Operation of Axisymmetric Tokamak Reactor with a Circular Cross Section (원형 단면을 가진 축대칭형 토카막 핵융합로의 최적운전을 위한 이상적 자기유체역학 안전성을 유지하는 베타값의 최대한계)

  • Lee, Hyoung-Koo;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.32-39
    • /
    • 1989
  • A method for determining the optimum ideal MHD $\beta$limit and the operation conditions is presented for an axisymmetric tokamak reactor with a circular cross section. The $\beta$limit is calculated under the constraints of ideal MHD instability criteria with varying the operation conditions which depend on the toroidal current density distributions. Semiempirical laws deduced from experimental observations are used for the toroidal current density distributions. Analytic derivations of various equations required to determine the $\beta$limit are carried out from the empirical equations. Various distributions of the $\beta$limit are obtained by the numerical calculations for different distributions of the toroidal current density. The resulting values of the maximum $\beta$limited by ideal MHD instabilities are expressed by a scaling law in terms of the tokamak geometry and the safety factor.

  • PDF

A Study on Corrosion Fatigue Characteristics Based on Welding Methods of Structural Steel (구조용강의 용접방법에 따른 부식피로특성 연구)

  • Park, Keyoung-Dong;Ryu, Hyoung-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.58-64
    • /
    • 2006
  • The security of stability for fractures of all sorts of parts and structure has become a first subject these days. We have need to organize fatigue characteristics of weldment because fatigue break out suddenly without a change of shape. In this study, we execute the fatigue test according to different of the welding method at the same materials. It was investigated about a fatigue limit according to welding methods of SMAW, FCAW and SAW at normal temperature and a frequency of 10Hz. The important results of the experimental study on fatigue characteristics of weldment are as follows: The fatigue limit of welding methods became low in the order of SMAW, FCAW, SAW.

  • PDF

INVESTIGATION ON PREDICTION OF FORMING LIMIT FOR COLD UPSETTING BY UTILIZING ENERGY FRACTURE CRITERION

  • Lee Rong-Shean;Wang Shui-To;Chen Jih-Hsing
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.22-25
    • /
    • 2003
  • The forming limits are studied for cold upsetting of high strength aluminium alloy in the present paper. Different geometry ratio and frictional conditions are investigated in the forgeability test to evaluate the forming limits and also to obtain the various strain paths. The critical fracture value can be obtained by integrating along the strain path till free surface crack initiation. To predict the damage evolution of cold upsetting, the computer-aided evaluation of forming limits is obtained by using the finite-element software DEFORM-3D and the modified Cockcroft-Latham criterion. The predicted theoretical limit strains agree quite well with the experimental results.

  • PDF

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측)

  • Choi, S.C.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.172-175
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. To solve the nonlinear system of equations derived from the equilibrium and constraints in the groove region and the safe zone, the Newton-Raphson method is used. The theoretical FLDs using four different yield criteria, that are von Mises, Hill (1948), Hill (1979), Logan and Hosford, are compared with the experimental, numerical (FEA) and other theoretical results. A new trial is made where a modified M-K model having n-step grooves is introduced to describe a real localized neck.

  • PDF