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Abstract

A method for determining the optimum ideal MHD £ limit and the operation conditions is presented
for an axisymmetric tokamak reactor with a circular cross section. The # limit is calculated under
the constraints of ideal MHD instability criteria with varying the operation conditions which depend
on the toroidal current density distributions. Semiempirical laws deduced from experimental obser-
vations are used for the toroidal current density distributions. Analytic derivations of various equations
required to determine the 3 limit are carried out from the empirical equations. Various distributions
of the g limit are obtained by the numerical calculations for different distributions of the toroidal current
density. The resulting values of the maximum /3 limited by ideal MHD instabilities are expressed by

a scaling law in terms of the tokamak geometry and the safety factor.

2 of

A4y dAg izl 2uiAd B0 g A8 5 A= A o) 4H Ar)FA
gk et gty AR A S AAEUTE ERolY AFHE BERE ZAHE e 4
220G WA ZIHA o] 4 zrfAde S KA A= weity sAE A
stk Eizelkt dFuE FRel e HAERNEH 4o APAE] AHEH UL, vE
ahel ghAlg Agstr) sla) HWad o AFe] o] APNFrR Y FEHAY. E2old A
Frawe] zhzh ghit Wae] ols Al ohekdt vl $hAl it BREEC] doHek o] 4A 27
2 8h Hobd d5ol ols) Agwrs Holo] We s Evbebe) v]sted 4ot kgl xlel] ¢
3} scaling law® 33 3} Th

—-32 —



Ideal MHD Beat Limit for Optimum Stable Operation --- H.K.Lee and S.H Hong 33

1. Introduction

The maximum achievable 3 value is one of the most
important parameters determining the relevance of
the tokamak as an energy producing fusion device.
/3 is a dimensionless form of plasma pressure indicating
the efficiency of confining plasmas with magnetic field
and is related to the thermal power of the fusion reactor.
For example. the alpha particle heating power in JET
fueled with 50%—50% DT, at the full field of 35T,
can be approximated [1] by P.=#% where 8 is the
volume averaged beta in % and the power P, is in
megawatts. This means tokamak should have high A
to be operated efficiently. There are, however, limita-
tions on increasing the 3 value due to the MHD ins-
tabilities such as kink modes, internal modes, ballooning
modes and so on. In particular, the limits set by the
instabilities of ideal MHD provide a realistic guideline.

The fact that tokamak experiments have not yet
reached 3 values as high as necessary lends great
importance to the investigation of new configurations
with higher 3 values. Many theoretical and experimen-
tal workers have tried to reach the highest g value

against MHD instabilities[1-11]. Troyon and his cowor-

kers have made an observation about the 8 limits in
several tokamaks with neutral beam injection heatings
[1.3.4], and Wesson and Sykes optimized the achievable
B value with respect to ballooning modes alone[5].

It is the purpose of this work to determine the op-
timum toroidal current density distribution with the
maximum achievable 3 value for the effective stable
operation of the axisymmetric large-aspect-ratio tokamak
with a circular cross section. With varying the shape
of the current density profile based on semiempirical
laws, the maximum achievable f value for each case
is numerically obtained under the constraints of ideal
MHD instability criteria. As a result the ultimate optimum
3 value and the corresponding current density profile
are determined, and a scaling law for the maximum
B limit is obtained in terms of system and operating
parameters of the tokamak. The cgs electromagnetic

units (e.m.u.) will be used throughout the present paper.

2. Beta Limitation and Stability Criteria

In an axisymmetric tokamak plasma with a circular
cross section and a large aspect ratio (Ro/a)>1) the
volume averaged g can be expressed as
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where a is the plasma radius and P is the plasma
pressure. By is the toroidal magnetic field which is
assumed to be uniform in a large-aspect-ratio plasma
region. To obtain the limit of B value the expression
for B should include terms related to MHD instabilities.
One of such parameters is «[5,12-14] which appears
in the stability criterion of the ballooning mode and
is defined as

2Roq’ dP
B% dr

(2)

in which another parameter q called the safety factor
is included. & measures the pressure gradient of plas-
mas. By integration-by-part and using Eq - (2) the
expression of f8 Eq - (1) becomes

. ar’

_ dn
/J’——‘—azRﬂ i 2 dr.

(3)

Since @ depends on the ballooning mode criterion
and q is related to the stability criterion of kink or
internal mode, we can easily conjecture that 4 value
is limited by the stability criteria through « and q.
There are, therefore, two stability criteria which con-
strain /3 values. One is the Kruskal-Shafranov or
Mercier criterion, and the other is the ballooning mode
criterion.

The safety factor is a critically important quantity
in the theory of MHD instabilities and appears in the
Kruskal-Shafranov or Mercier criterion, which imposes
a limit on the g-value in the plasma;
=31 (4)
at the magnetic axis of a large-aspect-ratio circular
plasma. According to this stability criterion, tokamaks
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should be built with strong toroidal magnetic fields.
Given the strongest toroidal field we can supply, the
Kruskal-Shafranov or mercier criterion sets an upper
bound on the amount of toroidal current we can drive
in the plasma column.

The stability of ballooning modes driven by the
interaction of the plasma pressure gradient with local
regions of bad magnetic curvature is determined by
minimizing the potential energy functionall7,12-14].
For a model problem representing a large-aspect-ratio
tokamak with circular flux surfaces, when the magnetic
field field is uniform over the magnetic surface but
the shear is nonuniform, the Euler equation obtained
by minimizing the potential energy functional becomes
[12,13]

d dF
—— 1 +(sp—asinp)?]——

& [1+ (sp—asinp)?] &
+afcospt sin N(sp—asin n)]JF=0,

wheres is the mean shear defined as

dg

s(r)E% -
F is an eigenfunction related to the normal displace-
ment of the perturbed fluid element in plasmas. 1 is
related to the poloidal angle 6 and its domain is
-00¢p{ 00, Derivation of Eq+(5) incorporates the Mercier
criterion [12). Eq - (5) has been integrated numerically
with the boundary conditon F—0 as [0|—+co. The
ballooning mode criterion from the numerical com-
putations is, thus, well approximated by the following
two equations. For small s and & the criterion becomes

(13]
s=ya’, 7
where ¥=3/4(1 + 1//2), and for the other region of

s and a, the approximation is [7]

4a[1+%s]=1+2.852. (8)
These two equations can be adopted as the stability
criterion, but the regions of s and a where each of

these equations is applicable, respectively, are not clear.
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In this work the intersecting point of Eg - (7) and
(8) is used as an inter-boundary of these two regions,

which is found by the Newton’s method;

§=7.323 %1072

Hence the ballooning mode criterion becomes

a=,/>, 0=s=7.323%10" 337,

9)
1+28¢°

—_— -2
=i 97328107

a

Fig.1 shows the diagram of ballooning mode stability
according to this criterion.
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Fig.1 Stability Diagram of Balloning Mode.

3. Relation Between Stability Criteria Para-
meters and Toroidal Current Density

In view of the ballooning mode criterion (9) « is

a function of s, and from Eq - (6)s depends on q. The
safety factor for circular cross section is expressed as

qlr)= B¢ (9}

- RoB(r)
and in this case q has a relation with j» by the Ampere’s

law « is, therefore, dependent on js, Consequently
is related to js and its value depends on the shape

of the toroidal current density profile. j» appears in
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the Grad-Shafranov equation as a source term. The where Bu(a) is the poloidal magnetic field at the plasma
Grad-Shafranov equation derived in the Grad-shafranov boundary. Substitution of Egs.(12) and (14) into (11)
equation as a source trem. The Grad-Shafranov equat- with the help of the pressure balance relation yields
ion derived in the flux coordinate system (X, ¢ .0) for the current density

the axisymmetric plasma equilibria is [16]

JRE=— T ey (KRR
R%W - R%yx=4nRjs= -—47rR2L(X) ~1(x) di(x) (Xo—2» 4=R
dx dx (15)
(10)

where ¥ is a flux surface label and (X)I=B:R is a In Eq - (15) js is a function of R and Xs, which are
flux surface quantity related to total poloidal current. not postion variables. In order to obtain the distribution

The two functions P(X) and 1( X), which can be obtained of j+ as a function of position variables, r and o ¢

accurately from transport codes, determine the toroidal ignored due to the axisymmety of the torus), tran-

current denstty, sformation of the coordinate system into @ toroidal
one (r0,4) is carried out with an approximation of

2
jo(R.X):—R% - SiR j—; (11) introducing the mean radius of the magnetic surface

For simplicity without using transport codes, semiem- cross section. R is transformed into

pirical laws deduced from experimental observations
are used for the two functions P(x) and I{x) in this R=Ro+1 cosd. (16)
paper. Many empirical expressions of the toroidal cur-
rent density have been used to solve plasma equilibrial A poloidal magnetic flux ¥ normalized to unity at
[134,8-10,16]. In this work the functional forms in

Ref 16 are used as follows;

the plasma surface is usually represented as [17.18]
¥ =c", where @ is the mean radius of the magnetic
surface cross section and @=1 at the plasma surface.
P(x)=P%, But in our case, the poidal magnetic flux Xs is nor-
, 12 malized to unity at the magnetic axis. For making Xs
2, J— 2, 2, v
F(X)=R, [B40) - Bia)lxs, ) normalized to unity at the plasma surface, let
where v is a current peaking factor, P, is the plasma
pressure at the magnetic axis, B+(0) and Bs(a) are Yo—lw? =1 _(L )2 a7)
toroidal magnetic fields at the magnetic axis and at a

the plasma boundary, respectively. Xs is a dimensio-
The conditions of Eqs - (13) and (17} at the mag-

nless poloidal magnetic flux normalized in such a way
netic axis and plasma boundary are identical. Inserting

that
Eqs + (16) and (17) into (15) makes j» rewritten as
e, 63 |
) 4 T, »1[(R0+rCOS@)Zﬂ';—i-R(;Z(l-ﬁU)]
]U(r'e):? [HZH R, + rcost
where X, and X, are poloidal magnetic fluxes at the
magnetic axis and at the boundary, respectively. A (18)
dimensionless parameter s related to the poloidal
beta A is defined as where j ., is the toroidal current density at the magnetic

axis. By varying the values of v and 81 in Eq-(18)we
_ 8P

Ao="gura)

(14)  can get various shapes of the toroidal current density
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distribution.
From the Ampere’s law and Eq - (18), the poloidal

magnetic field becomes

Bo(r)— ﬁ”a noL T3] 4 Ry(1— o) flvu)
(19)
where f(vy) is defined as
o= [Ro [l +(E Flidt, e=2-
=g Wg T e=p.
(20)

The expression (19) of Ba(r) vields the safety factor

for circular cross section;

al= ;&f ;. (21)
where
qo=—28¢ (22)
jsoRov
hi=122 1 (1—1 N+R(Lga. &

=i,

go should be greater than or equal to 1 to be
stable against the internal or kink mode. By substit —
- (21} into Eq- (6)

the mean shear becomes

ution of Eq

rhl(r)
h(r)

s(r)=2-

where

1 [J’H

7=

l(r)—=—r[1-§ 1" [ Be+ (25)

By varying the toroidal current density distribution
(18) with the parameters of v and fe, 3 limits are
calculated from Eq - (3) with Eqs - (21) and (24) sa
tisfying the constraints (4) and (9) of the stability criteria.

The optimum stable operation condition is given for

and differentiation,
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the toroidal current density distribution by choosing
the appropreate values of v and 3¢, and the maximum

B value is then determined from these f limits.
4. Results and Discussions

1) Numerical Illustrations

Numerical calculations are carried out on the com-
puter to find B limits and optimum current density
profiles. The dependences of the profiles on the current
peaking factor » and the poloidal beta parameter o
are firstly examined for the toroidal current density

in a large-aspect-ratio plasma (r ((Ro). Figs. 2 and 3
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Fig.2 Profiles of Toroidal Current Density with Varying v.

illustrate the toroidal current density profiles in an ar-
bitrary unit with varying v and fe, respectively. As v
increases the profile becomes centrally peaked shape
(Fig 2), and as fe increases the peck shifts outward
from the magnetic axis (Fig,3) while the area under
the curve is not changed, that is, the total toroidal
current is constant. In view of theseresults we are able
to express in terms of v and B the arbitrary toroidal
current density whose shape we know in the tokamak.
Once we find the toroidal current density profile to
give the maximum /3 value, we can take advantage
of it as the optimum operating condition by controlling
plasma generation and current drive in the tokamak.
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Fig4 shows $3 limits as functions of v in three cases
of 541,1.5,2 for the inverse aspect ration e=a/Ry=1/3
and q,=1. The maximum beta limit 5y of 2.65%
is obtained when v=1.61 and gs=1. As we have
expected from the results of Fig.3, 4 limits have little
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dependence on Be. By is calculated to increase linearly
as € increases, which means that the fat type of tok-
amak reactor is good for high 3 operation. In our
calculations, B is decreased as q, increases. Lower
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value of q is them required for getting higher Sm,
but q, is limited by kink or internal mode criterion,
@21, and By is thus maximized when go=1. Three
types of toroidal current density and safety factor
profiles and their corresponding /3 limits are illustrated
in Fig5.a), b) andc) are characterized as flat, shifted
and centrally-peaked types of toroidal current density
profile, respectively. The centrally-peaked type is
preferable rather than flat or shifted types to get the

maximum /A limit.
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2) Scaling Law
From the results the maximum beta limit 8, in

is expressed in a scaling law when v=1.61 as

(26)

3
=79—.
Bm ai
which is the same form as that obtained from the two
parameter model[2]. The difference is only the coef-
ficient, which is 7.7 when adopting the two parameter

model. Fig.6 shows the scaling law(26).
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5. Conclusion

Optimization of 3 limit is discussed with varying the
shape of the toroidal current density profile for an
axisymmetric tokamak with a circular cross section
under the constraints of ideal MHD instabilities.
Semiempirical laws are adopted for the toroidal current
density distributions.

As the peaking factor v increases the toroidal current
density profile becomes peaked type, and when Bo
increases the peak of the profile shifts outward across
the plasma column. g limit increases as the current
density peak shifts to the magnetic axis, but the
dependence of /3 limit on the peak shiftness is trivial.
The maximum value of 4 limit is obtained when v=
1.61 and Bs=1, from which the optimum current
density profile is determined for the effective stable
operation of the tokamak. Bm in % is expressed by

the scaling law,
£
/J’m=7.9a .

In this work for high-temperature tokamak reactors
ideal MHD instabilities are taken into account. A realistic
B limit for ohmic-stage tokamaks may be obtained by
including the resistive modes in the stability criteria
due to low-temperature operation, and further study
is required for these analyses. If e=1/3 and g,=1 we
get Bn=2.65% according to the scaling law and this
is nealy the upper limit for tokamaks with circular cross
sections[11]. Noncircular shaping of the cross section
of the plasma column is then recommended to increase
the B limit.
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