• Title/Summary/Keyword: Limit Pressure

Search Result 899, Processing Time 0.032 seconds

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.486-497
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate, A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side has a shape of annulus around vertical tube and the lost heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 11 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348∼3.282kg/hr, of inlet air mass fraction 11.8∼55.0%. The investigation of the flooding is preceded to find the upper limit of the reflux condensation. Onset of flooding is lower than that of Wallis' correlation. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the increase of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed by 165 data of the local heat transfer. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17.7% between the results by the experiment and by the correlation.

  • PDF

Chemical Risk Assessment Screening Tool of a Global Chemical Company

  • Tjoe-Nij, Evelyn;Rochin, Christophe;Berne, Nathalie;Sassi, Alessandro;Leplay, Antoine
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.84-94
    • /
    • 2018
  • Background: This paper describes a simple-to-use and reliable screening tool called Critical Task Exposure Screening (CTES), developed by a chemical company. The tool assesses if the exposure to a chemical for a task is likely to be within acceptable levels. Methods: CTES is a Microsoft Excel tool, where the inhalation risk score is calculated by relating the exposure estimate to the corresponding occupational exposure limit (OEL) or occupational exposure band (OEB). The inhalation exposure is estimated for tasks by preassigned ART1.5 activity classes and modifying factors. Results: CTES requires few inputs. The toxicological data, including OELs, OEBs, and vapor pressure are read from a database. Once the substance is selected, the user specifies its concentration and then chooses the task description and its duration. CTES has three outputs that may trigger follow-up: (1) inhalation risk score; (2) identification of the skin hazard with the skin warnings for local and systemic adverse effects; and (3) status for carcinogenic, mutagenic, or reprotoxic effects. Conclusion: The tool provides an effective way to rapidly screen low-concern tasks, and quickly identifies certain tasks involving substances that will need further review with, nevertheless, the appropriate conservatism. This tool shows that the higher-tier ART1.5 inhalation exposure assessment model can be included effectively in a screening tool. After 2 years of worldwide extensive use within the company, CTES is well perceived by the users, including the shop floor management, and it fulfills its target of screening tool.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

A Clinical Study of Patent Ductus Arteriosus (동맥관개존증의 임상적 고찰)

  • 이선희
    • Journal of Chest Surgery
    • /
    • v.21 no.4
    • /
    • pp.672-680
    • /
    • 1988
  • Munro is generally considered the first person to have demonstrated, in 1888, in an infant cadaver, the feasibility of dissection and ligation of a persistently patent ductus arteriosus. In august, 1938, Robert Gross reported first successful division and suture of the patent ductus of 7 year old girl. Interruption of a ductus is one of the most satisfactory and curative operations in the field of surgery for congenital heart disease. Seventy-eight consecutive cases of closure of patent ductus arteriosus were operated from June 1980 to June 1988 in the department of thoracic and cardiovascular surgery in Maryknoll Hospital. Retrospective clinical analysis of the patients were 1. There were 24 males, 54 females. 2. The age range of the patients were from 7 months to 32 years with the mean age 9.8 years. 3. Chief complaints of the patients were frequent URI[70.5%], dyspnea on exertion[36.9%], palpitation[10.3%], but 15 patients[19.2%] had no subjective symptoms. 4. Continuous machinery murmur could be heard at the 2nd or 3rd intercostal space on the left sternal border in 66 patients[84.6%]. The other 12 patients made systolic murmur. 5. Radiographic findings of the Chest P-A were cardiac enlargement in 55 patients[70%], enlargement of pulmonary conus and/or increasing density of pulmonary vascularity in 68 patients[87%]. 6. Electrocardiographic findings of the patients were within normal limit in 23 patients[36%], LVH in 38 patients[48.7%], RVH in 7 patients[9%], biventricular hypertrophy in 5 patients[6%]. 7. Cardiac catheterization performed in 62 patients. Mean Qp/Qs=2.5, mean pulmonary arterial pressure=45 mmHg. 8. 73 patients were operated through left posterolateral thoracotomy: Closure of the ductus by ligation in 64 cases, division with suture in 6 cases, and division with aortopatch in 3 cases. Ligation through median sternotomy under cardiopulmonary bypass were 5 cases. 9. There was no death associated with operation, but one case was experienced with intraoperative tearing of ductus resulting in massive bleeding. The other complications were transient hoarseness in 2 patients, chylothorax in 2 patients.

  • PDF

Theoretical Analysis on the Velocity Profile of Newtonian Fluids within Modelled Asymmetric Membrane Pores (모델화한 비대칭형 막기공에서 뉴톤 유체의 속도분포에 관한 이론해석)

  • 전명석;김재진
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.142-149
    • /
    • 1997
  • The extended analysis on the diverging flow through asymmetric membrane pores has been performed in this study. Afore rigorous equations of velocity profile relevant to the divergent slit and cone shaped channels, which are widely used as a general pore model, have been obtained by employing a creeping flow approach of Newtonian fluids. As a degree of asymmetry (i.e., diverging angle) is increased, the predicted flow function shifts Toward the center region due to the incorporated wall effect, so that the overall velocity profile becomes decreased. It is true, as expected, that when the divergent channel is in the low diverging angle limit, the channel flow results in the Poiseuillean fashion by utilizing a lubrication approximation. The flow rate equation of each type of channel has been developed from the combined solution of velocity profile and pressure fields. The effect of diverging flow on the flow rate enhancement has been remarkably predicted, in which the flow rate increases with the increase of pore asymmetry. The advantage of our theoretical results lies in the analytical expression for the diverging flow behavior through pore channels as well as its ability to play a fundamental role on the related membrane filtrations such as microfiltration and ultrafiltration.

  • PDF

Research on the Characteristics and Measures of Noise Exposure on Worker Wearing Acoustic Devices (음향도구 착용 근로자의 소음노출 실태에 관한 연구)

  • Kim, Kab-Bae;Yoo, Kye-Mook;Lee, In-Seop;Chung, Kwang-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.615-621
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset. Noise exposure measurements of 17 operators were performed in 7 call centers and head and Torso simulator method in compliance with the ISO standard 11904-2 was used for the measurement of noise transmitted from the headset. Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of pearson correlation analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Effects of Closed Chain Lower Limb Exercise with Abdomial Breathing Exercise on Trunk Control and Balance in Stroke Patients (배호흡운동을 동반한 닫힌 사슬 하지운동이 뇌졸중 환자의 체간조절 및 균형에 미치는 영향)

  • Lee, Je-Hyeok;Kim, Seong-Ho
    • Journal of Korean Academy of Medicine & Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.31-37
    • /
    • 2018
  • Objective: The purpose of this study was to evaluate the effects of closed chain lower limb exercise with abdominal breathing exercise on stroke patients and their effects on trunk control ability and balance. Method: The subjects were 40 stroke patients, 19 patients in the experimental group and 18 patients in the control group. The period was 5 weeks, 5 times a week, 30 minutes per session. The experimental group was subjected to a closed chain lower limb exercise with abdominal breathing exercise and the control group was subjected to a closed chain lower limb exercise. The posture assessment scale for stroke(PASS), trunk impairment scale(TIS) were used for trunk adjustment ability, and the balance ability was measured as center of pressure(COP) and limit of stability(LOS). Results: Results of this study showed that the PASS and TIS test significantly increased the experimental group compared to the control group. As a result of comparing the changes of pre and post intervention intervals between the two groups, the TIS test was significantly lower in the experimental group than in the control group, but the LOS test was not significantly increased in the experimental group. Conclusion: Closed chain lower limb exercise with abdominal breathing exercise showed a significant improvement in the trunk control and balance ability of the stroke patients compared to the closed chain lower limb exercise without the abdominal breathing exercise.

A Study on Establishing Target Reliability Levels for Flammable Gas Transmission Pipelines (가연성가스 수송배관에 대한 목표 신뢰도 수준 설정에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.52-58
    • /
    • 2018
  • In reliability based design and assessment (RBDA) methodology, reliability targets are used to ensure that safety levels are met relevant limit states in the stage of design and maintenance. The target reliability for flammable gas pipelines have not been developed yet in Korea. Instead of the reliability targets, the tolerable criteria for risk measures such as societal and individual risk have been applied in pipeline risk management. This paper introduces the procedures to develop the target reliability using tolerable risk criteria for societal and individual risk which can be enforced for high pressure natural gas pipelines in quantitative risk assessment. In addition, we propose the target reliability for natural gas and hydrogen gas transmission pipelines by the procedures.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.