• Title/Summary/Keyword: Limit Load Solution

Search Result 66, Processing Time 0.025 seconds

Complete lower bound solutions of circular plate collapse problems by a finite difference method (원형평판의 붕괴문제에 관한 유한차분 완전 하계해)

  • Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1382-1390
    • /
    • 1990
  • Accurate load-carrying capacities and moment distributions of thin circular plates are obtained for clamped or simply-supported boundary condition under various concentrated circular loadings. The material is regarded as perfectly-plastic based on an arbitrary yield function such as the Tresca yield function, the Johansen yield function, and the farmily of .betha.-norms which possesses the von Mises yield function and the Frobenius norm. To obtain the lower bound solutions, a maximization formulation is derived and implemented for efficient numerical calculation with a finite difference method and the modified Newton's method. The numerical results demonstrate plastic collapse behavior of circular plates and provide their design criteria.

Validation of a smart structural concept for wing-flap camber morphing

  • Pecora, Rosario;Amoroso, Francesco;Amendola, Gianluca;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.659-678
    • /
    • 2014
  • The study is aimed at investigating the feasibility of a high TRL solution for a wing flap segment characterized by morphable camber airfoil and properly tailored to be implemented on a real-scale regional transportation aircraft. On the base of specific aerodynamic requirements in terms of target airfoil shapes and related external loads, the structural layout of the device was preliminarily defined. Advanced FE analyses were then carried out in order to properly size the load-carrying structure and the embedded actuation system. A full scale limited span prototype was finally manufactured and tested to: ${\bullet}$ demonstrate the morphing capability of the conceived structural layout; ${\bullet}$ demonstrate the capability of the morphing structure to withstand static loads representative of the limit aerodynamic pressures expected in service; ${\bullet}$ characterize the dynamic behavior of the morphing structure through the identification of the most significant normal modes. Obtained results showed high correlation levels with respect to numerical expectations thus proving the compliance of the device with the design requirements as well as the goodness of modeling approaches implemented during the design phase.

An Optimization Study on Maximizing the Earning Power of Casting Industry for Management through TPI (주물 산업의 수익력 극대화를 위한 관리부문의 TPI 최적화 연구)

  • Kang, Byong-Rho;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.327-333
    • /
    • 2014
  • Changes in the business environment in which intense and sustained growth and survival must meet a variety of customer needs (Q, C, D) and business side of the enterprise for profit structure reformation is absolutely necessary for innovation activities. So far, management of innovation in method BPR, PI, OVA, 6 Sigma, Strategic Purchasing, PPM, SCM etc. are being introduced. However, they have a limit of partial optimization and improvement-oriented techniques. So this paper studied the TPI(Total Profit Innovation) application in order to derive empirical methodology to maximize profitability for the domestic S foundry factory. To this end, long-term gains through structural analysis and intensity analysis to ensure continued growth and profitability strategy are devised through management Innovation analysis. And improvement projects was presented to solve main issues of five categories(Inventory, Sales Mix, Cost, Quality Cost, Skill and Work-load) We will expect the office productivity improvement and financial performance improvement and then continually accumulate and review the results.

Rapid-Charging Solution for 18650 Cylindrical Lithium-Ion Battery Packs for Forklifts

  • Kim, Dong-Rak;Kang, Jin-Wook;Eom, Tae-Ho;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.184-194
    • /
    • 2018
  • In this paper, we propose a rapid-charging system for the lithium-ion battery (LIB) packs used in electric forklifts. The battery offers three benefits: reduced charge time, prolonged battery life, and increased charging efficiency. A rapid-charging algorithm and DC/DC converter topology are proposed to achieve these benefits. This algorithm is developed using an electrochemical model, which controls the maximum charging current limit depending on the cell voltage and temperature. The experimental use of a selected 18650 LIB cell verified the prolongation of battery life on use of the algorithm. The proposed converter offers the same topological merits as a conventional resonant converter but solves the light-load regulation problem of conventional resonant converters by adopting pulse-width modulation. A 6.6-kW converter and charging algorithm were used with a forklift battery pack to verify this method's operational principles and advantages.

The Evaluation of Burst Pressure for Corroded Weld in Gas Pipeline (가스배관 용접부위 부식에 대한 파열압력 평가)

  • Kim, Young-Pyo;Kim, Woo-Sik;Lee, Young-Kwang;Oh, Kyu-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.222-227
    • /
    • 2004
  • The failure assessment for corroded pipeline has been considered with the full scale burst test and the finite element analysis. The burst tests were conducted on 762 mm diameter, 17.5 mm wall thickness and API 5L X65 pipe that contained specially manufactured rectangular corrosion defect. The failure pressure for corroded pipeline was measured by burst testing and classified with respect to corrosion sizes and corroded regions - the body, the girth weld and the seam weld of pipe. Finite element analysis was carried out to derive failure criteria of corrosion defect on the pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.

  • PDF

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Response of transmission line conductors under different tornadoes

  • Dingyu Yao;Ashraf El Damatty;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.179-189
    • /
    • 2023
  • Multiple studies conducted in the past evaluated the conductor response under one tornado wind field, while the performance of transmission lines under different tornado wind fields still remains unknown. Thus, the objective of this paper is to estimate the variation in the conductor's critical longitudinal and transverse reactions under different tornado wind fields, as well as providing the corresponding critical tornado configurations. The considered full-scale tornadoes are the Spencer, South Dakota, 1998, the Stockton, Kansas, 2005 and the Goshen County, Wyoming, 2009. Computational Fluid Dynamics (CFD) simulations were previously conducted to develop these wind fields. All tornadoes have been rescaled to have a common velocity matching the upper limit of the F2 Fujita scale. Eight conductor systems, each including six spans, are considered in this paper. For each conductor, parametric studies are conducted by varying the location of the three tornado wind fields relative to the tower of interest, therefore the peak reactions associated with each tornado are determined. A semi-analytical closed-form solution, previously developed and validated, is used to calculate the reactions. The study conducted in this paper can be divided into two parts: In the first part, a parametric study considering a wide range of tornado locations is conducted. In the second part, the parametric study focuses on the tornado location leading to the critical tangential velocity on the tower. Based on this extensive parametric study, a critical tornado defined as the Design Tornado and its critical locations, tornado distance R = 125 m, tornado angle 𝜃 = 15° and 30°, are recommended for design purposes.

Distribution of shear force in perforated shear connectors

  • Wei, Xing;Shariati, M.;Zandi, Y.;Pei, Shiling;Jin, Zhibin;Gharachurlu, S.;Abdullahi, M.M.;Tahir, M.M.;Khorami, M.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • A perforated shear connector group is commonly used to transfer shear in steel-concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel-concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load-slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

Storage Stability and Shelf Life Characteristics of Korean Savory Sauce Products

  • Yun, Jung-Hyun;Cha, Yong-Jun;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.242-250
    • /
    • 2007
  • This study evaluated the storage stability of a variety of sauce products in the Korean market, determined primary quality indices for three typical products, and proposed functional relationships that are useful for determining shelf life at different temperatures. Most of the products examined were found to combine hurdles of low pH, low water activity, and the use of heat processing as methods for producing the required storage stability while maintaining the sensory quality of the products. For a meat extract solution produced for cold noodles (pH=4.3; $a_w=0.98$), the primary quality change determining shelf life was lipid oxidation, determined here by the TBA value. The primary quality index of a soybean paste seasoning mix (pH=4.0; $a_w=0.78$), which had a microbial load of 2.8 log (CFU/g), was a decrease in its pH. The primary quality index for a sandwich spread (pH=4.0; $a_w=0.88$) was changes in its surface color. The temperature dependence of changes in the primary quality indices can be described by the Arrhenius equation, which can estimate the shelf life at any arbitrary limit as a function of temperature. The activation energies for changes in the primary quality indices of the meat extract solution, the soybean paste seasoning, and the sandwich spread were 20.3, 27.2, and 43.5 kJ/mol, respectively.