• Title/Summary/Keyword: Limit Load Method

Search Result 461, Processing Time 0.023 seconds

Practical estimation of the plastic collapse limit of curved pipes subjected to complex loading

  • Yan, A.M.;Nguyen, D.H.;Gilles, Ph.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.421-438
    • /
    • 1999
  • In this paper a practical limit load estimating procedure is proposed for general pipe-elbow structures subjected to complex loading (in-plane and out-of-plane bending, internal pressure and axial force). The explicit calculating formulae are presented on the basis of theoretical analysis combined with numerical simulation. Von Mises' yield criterion is adopted in both analytical and numerical calculation. The finite element examination shows that the method provides a simple but satisfactory prediction of pipe structures in engineering plastic analysis.

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

Analysis of Live Load Factor for Bridge Evaluation Through Reliability Based Load Factor Calibration (신뢰도기반 하중계수 캘리브레이션을 통한 교량 평가 활하중계수 분석)

  • Yoo, Min-Sun;Kim, Kyung-Hyun;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.212-221
    • /
    • 2022
  • In this paper, the evaluation procedure applying the limit state design method is studied to be consistent with the newly issued bridge design code in Korea. The live load factor for evaluation is proposed by calibrating for the target reliability index through reliability analysis. Using the actual bridge information collected for the representative bridge types in Korea, the load effects of the design live loads for the previous and current design codes are calculated and compared. The live load factor is calibrated through reliability analysis using the minimum required strength which equals to the load effect obtained for the example bridge. Bridge evaluation is performed by applying the live load factors for the evaluation level as well as design level. The load rating result is generally increased by applying the limit state design method compared to the previous design method and applying the proposed load factor for lowered target reliability index further increased the rating result.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

An evaluation of influence factors based on the limit state design-AASHTO LRFD for structural analysis of shield tunnel segment lining (한계상태설계법-AASHTO LRFD를 적용한 쉴드터널 세그먼트 라이닝의 구조해석 영향인자 평가)

  • Kim, Yang-Woon;Kim, Hong-Moon;Kim, Hyun-Su;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.99-118
    • /
    • 2018
  • Recently, the limit state design method in the design of the structure is in global trend, but it is limited to a few structures in Korea. Since the introduction of the limit state design method has recently been attempted for tunnels, which are the main underground structures, it is surely necessary to understand the latest limit state design method. Therefore, based on the recently published AASHTO LRFD Road Tunnel Design and Construction Guide Specification (2017), structural load factors and load combinations were reviewed, and various factors which should be applied for the review of structures have been analyzed. In this study, utility tunnel section and subway tunnel sections used in Korea were analyzed by the limit state design method, and we have analyzed the direction of application of limit state design method through studying the tendency of member force by various influential factors such as ground conditions, load modifier and joint stiffness.

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.

Development of Evaluation Method for Transmission Marginal Loss Factors Considering the Electrical Distance (전기적인 거리를 고려한 한계송전손실계수 산정 방법론 개발)

  • Park, Jong-Bae;Lee, Ki-Song;Lee, Chan-Joo;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.488-490
    • /
    • 2003
  • This paprer presents the evlauation method for transmission marginal loss factors(MLFs) considering the electrical distance. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of generation by the change of the load. MLFs are classified as load-focused MLFs and generator-focused MLFs. The existing evaluation method for generator focused MLFs has the limit not reflecting the characteristic of power systems since the method has been introduced the assumption which the output of a generator is supplied to all of the load buses on the power system. Therefore, to overcome the limit of evaluation method for generator-focused MLFs, we have applied the process, which it approximately can find the load buses that supplied a generator to the method. We have applied the proposed method to the simple 5-bus system because the proposed method is not analytic but the hybrid method incorporated the Kirschen and Bialek's algorithm to the existing analytic method to find the load buses supplied by a generator.

  • PDF

A Study for the Development of Pile Design Method Considering Settlement and Compression (침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구)

  • Lim, Jong-Seok;Ha, Hyuk;Jung, Sang-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

Probabilistic analysis of RC beams according to IS456:2000 in limit state of collapse

  • Kulkarni, Anadee M.;Dattaa, Debarati
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • This paper investigates the probability of failure of reinforced concrete beams for limit state of collapse for flexure and shear. The influence of randomness of the variables on the failure probability is also examined. The Indian standard code for plain and reinforced concrete IS456:2000 is used for the design of beams. Probabilistic models are developed for flexure and shear according to IS456:2000. The loads considered acting on the beam are live load and dead load only. Random variables associated with the limit state equation such as grade of concrete, grade of steel, live load and dead load are identified. Probability of failure is evaluated based on the limit state equation using First Order Reliability Method (FORM). Importance of the random variables on the limit state equations are observed and the variables are accordingly reduced. The effect of the reduced parameters is checked on the probability of failure. The results show the role of each parameter on the design of beam. Thus, the Indian standard guidelines for plain and reinforced concrete IS456:2000 is investigated with the probabilistic and risk-based analysis and design for a simple beam. The results obtained are also compared with the literature and accordingly some suggestions are made.

A Method of Determining the Maximum Interface Flow Limit Using Continuation Algorithm (연속알고리듬을 이용한 연계선로의 송전운용한계 결정)

  • Kim, Seul-Gi;Song, Hwa-Chang;Lee, Byeong-Jun;Gwon, Se-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.78-84
    • /
    • 2000
  • This paper introduces a method of determining the maximum real power transfer limit of interface lines, which connect two areas of a power system, using locally parameterized continuation algorithm. This method traces the path of power flow solutions as interface flow is gradually increased under a certain load demand condition and finds the steady state voltage stability limit, the interface flow limit. Voltage stability index is used to indicate how close the maximum limit is reached. Also, this study presents a procedure to determine the security-constrained interface flow limit using the above method. Contingency ranking index is proposed to identify the severity of contingencies. The case study is performed according to the suggested procedure.

  • PDF