• Title/Summary/Keyword: Lignocellulosic enzymes

Search Result 43, Processing Time 0.038 seconds

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.

The Role of Rumen Fungi in Fibre Digestion - Review -

  • Ho, Y.W.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 1999
  • Since the anaerobic rumen fungi were discovered in the rumen of a sheep over two decades ago, they have been reported in a wide range of herbivores fud on high fibre diets. The extensive colonisation and degradation of fibrous plant tissues by the fungi suggest that they have a role in fibre digestion. All rumen fungi studied so far are fibrolytic. They produce a range of hydrolytic enzymes, which include the cellulases, hemicellulases, pectinases and phenolic acid esterases, to enable them to invade and degrade the lignocellulosic plant tissues. Although rumen fungi may not seem to be essential to general rumen function since they may be absent in animals fed on low fibre diets, they, nevertheless, could contribute to the digestion of high-fibre poor-quality forages.

Enhancing Enzymatic Saccharification by Aqueous Ammonia Soaking Pretreatment on Several annual plants (일년생 바이오매스(옥수수 줄기, 담배 줄기, 대마 목부)의 암모니아 침지 전처리가 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Park, Jong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.418-421
    • /
    • 2009
  • Effects of aqueous ammonia soaking to three annual plants (hemp woody core, tobacco stalk and corn stover) awere investigated to focus on the enzymatic saccharification characteristics change by this treatment. At two different levels of treatment ($90^{\circ}C$-16 h and $45^{\circ}C$-6 days), higher temperature treatment led to more enzymatic saccharification of cellulose to glucose by commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 from Novozyme Korea). Difference among annual plants were significant. corn stover was the best response to enzymatic saccharification of cellulose and xylan by comercial enzymes all treatment conditions but tobacco stalk was the worst response to all of them. chemical composition or physical structure difference may brought this difference.

  • PDF

Nitrogen Source Investigation for Economical Production of Cellulolytic Enzymes

  • Li, Hong-Xian;Kim, Gi-Wan;Lee, Young-Bok;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.250-255
    • /
    • 2005
  • Trichoderma inhamatum KSJ1, a filamentous fungus, isolated from rotten wood showed high ability to hydrolysis of cellulosic materials. Enzyme productivity by strain KSJ1 was high in the cultivation using carbon sources such as cellulosic materials and lignocellulosic wastes as rice straw and paper waste. In previous study peptone was one of optimum organic nitrogen sources in producing cellulases for saccharification of food wastes. However, it was too expensive using peptone as organic nitrogen source, so, in this study, soybean and yeast were applicated to substitute peptone. Yeast showed producing high enzyme activity, so it was estimated that yeast is available in producing cellulase using Trichoderma inhamatum KSJ1 at industrial Production.

  • PDF

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials (IV) - Simultaneous Utilization of Laccase and Cellulase - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (IV) - Laccase 및 Cellulase의 동시 이용 가능성 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.52-60
    • /
    • 1989
  • This study was carried out to know the possibility of simultaneous utilization of laccase from white-rot fungus with cellulase on enzymatic hydrolysis of cellulosic substrate from autohydrolyzed oak wood. Laccases from 3 white-rot fungi, Pleurotus ostreatus. Ganoderma lucidum, and Phanerochaete chrysosporium, were isolated, purified and measured their activities. The highest activity was shown in Pleurotus ostreatus and the lowest in Phanerochaete chrysosporium. Laccase from Pleurotus ostreatus has optimum pH of 5.94, Km value of 3.209 mM and appeared to be stable at relatively wide pH range, 4.7-8.72. Temperature stability showed that 60% activity was preserved after 40 minutes at $50^{\circ}C$. Laccase from Ganoderma lucidum reached to the maximum activity during 15-20 day incubation. This enzyme has optimum pH of 6.45, Km value of 6.71 mM and pH range of 5.0-9.0 for stabilization. 95% activity was preserved at $30^{\circ}C$ and 58% activity at $50^{\circ}C$. Concerned to the enzymatic hydrolysis of cellulosic substrate with both enzymes, cellulase and laccase, simultaneously, mixed culture filtrates and mycellium extracts were shown higher hydrolysis rates than those of Trichoderma viride. There were no significant differences in the extent of hydrolysis among various mixed culture filtrates and mycellium extracts.

  • PDF

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Potential of Using Maize Cobs in Pig Diets - A Review

  • Kanengoni, A.T.;Chimonyo, M.;Ndimba, B.K.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1669-1679
    • /
    • 2015
  • The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.

Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes

  • de Souza, Angelica Cristina;Carvalho, Fernanda Paula;Silva e Batista, Cristina Ferreira;Schwan, Rosane Freitas;Dias, Disney Ribeiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1403-1412
    • /
    • 2013
  • Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with $H_2SO_4$. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant ${\beta}$-glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% $H_2SO_4$ for 30 min at $150^{\circ}C$. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good ${\beta}$-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

Isolation of cellulosic biomass degrading microorganisms from different sources for low cost biofuel production

  • Sheikh, M. Mominul Islam;Kim, Chul-Hwan;Lee, Ji-Yong;Yeasmin, Shabina;Park, Hyeon-Jin;Kim, Gyeong-Chul;Kim, Sung-Ho;Kim, Jae-Won
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.81-91
    • /
    • 2011
  • Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. Recently, a large amount of studies regarding the utilization of lignocellulosic biomass as a good feedstock for producing fuel ethanol is being carried out worldwide. The plant biomass is mainly composed of cellulose, hemicellulose and lignin. The main challenge in the conversion of biomass into ethanol is the complex, rigid and harsh structures which require efficient process and cost effective to break down. The isolation of microorganisms is one of the means for obtaining enzymes with properties suitable for industrial applications. For these reasons, crude cultures containing cellulosic biomass degrading microorganisms were isolated from rice field soil, cow farm soil and rotten rice straw from cow farm. Carboxymethyl cellulose (CMC), xylan and Avicel (microcrystalline cellulose) degradation zone of clearance on agar platefrom rice field soil resulted approximately at 25 mm, 24 mm and 22 mm respectively. As for cow farm soil, CMC, xylan and Avicel degradation clearancezone on agar plate resulted around at 24mm, 23mm and 21 mm respectively. Rotten rice straw from cow farm also resulted for CMC, xylan and Avicel degradation zone almost at 24 mm, 23 mm and 22 mm respectively. The objective of this study is to isolatebiomass degrading microbial strains having good efficiency in cellulose hydrolysis and observed the effects of different substrates (CMC, xylan and Avicel) on the production of cellulase enzymes (endo-glucanase, exo-glucanase, cellobiase, xylanase and avicelase) for producing low cost biofuel from cellulosic materials.

  • PDF

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.